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Abstract
The task of same-class object co-localization is of
great importance. It allows a massive collection of
images to be arranged in a classified way and helps
searching engines to retrieve images of a given
topic more efficiently. However, it can be a chal-
lenging problem due to viewpoint, occlusion, mul-
tiple same-class objects in a single image, consid-
erable diversity in a certain class as well as time
requirements. In this paper, we introduced our pub-
lished papers which formulated this task as solving
the maximum edge weight clique (MEWC) prob-
lem. More specifically we first adopted a list of
deep learning techniques to obtain objects and sim-
ilarity measures for constructing associated graphs,
and then we called a local search solver to look
for an MEWC which corresponds to a group of
same-class objects. Experimental results not only
show that our method outperforms state-of-the-arts
but also confirms the individual impacts of our key
components.

1 Introduction
Given a set of images, the task of same-class object
co-localization, also known as image co-localization or
common-object discovery [Tang et al., 2014; Joulin et al.,
2014; Fan et al., 2017; Rao et al., 2019], is to simultane-
ously localize objects of the same class in each image. Co-
localization can be important, since it allows a massive col-
lection of images, like those from Facebook or Youtube, to
be stored in a classified way, which in turn, helps searching
engines to find images of a given topic more efficiently. This
mimics a situation in smart phones, where copies or refer-
ences of images automatically lie in different folders each of
which corresponds to a certain person. What’s more, similar
approaches can be applied to a huge set of text documents as
well.

In this paper we introduce a method to deal with the task of
same-class object co-localization, which aims at locating ob-
jects of the same class in an image collection. By convention,
we further require that at most one object can be obtained in
each image. Co-localizing objects in unconstrained environ-
ments is challenging. In the real-world applications, objects

of the same class may look different due to viewpoint, oc-
clusion, deformation, illumination, etc. Besides, there could
be considerable diversities even within the same object class.
Take human beings for instance, they may differ from each
other because of gender, age, costume, hair style or skin color.
Also, there can be multiple same-class objects lying in the
same set of images. In addition, efficiencies can sometimes
be vital in time-sensitive applications such as in large collec-
tions of images or video streams.

The Maximum Edge Weight Clique (MEWC) problem is
defined over a simple undirected graph G = (V,E,wE),
where V = {v1, . . . , vn} is the vertex set, each edge e ∈ E
is a 2-element subset of V , and wE : E 7→ R≥0 is a
weighting function on E. A clique C is a subset of ver-
tices in G such that each pair of vertices in C is connected.
The MEWC problem is to find a clique C which maximizes∑

vi,vj∈C wE({vi, vj}).
To achieve robust and efficient object co-localization, we

formulated this task as solving the MEWC problem. More
specifically, we utilized to deep learning to construct an asso-
ciated graph, in which each vertex represents to a single ob-
ject candidate generated from a given image collection, while
the weight on an edge e = {u, v} indicates how (visually)
similar u’s and v’s corresponding object candidates are. To
ensure that at most one object will be selected in any image,
we further required edges as follows. Two vertices are con-
nected by an edge if their corresponding object candidates are
from different images, otherwise, they are disconnected. In
this sense, any clique corresponds to a group of objects from
different images and vice versa. Hence, we can locate a set of
most mutually-similar objects by obtaining an MEWC in the
associated graph, and each vertex in the MEWC is a localized
same-class object across images (See Figure 1).

The main contributions of our work are as follows.
1. We adopted deep learning to formulate the task of same-

class object co-localization as an MEWC problem in an
associated graph, which in turn, provides an industrial
benchmark for research and applications about MEWC
algorithms.

2. We confirmed the effectiveness of local search in achiev-
ing high percentage of images with correct object co-
localization.

3. We found that the Region Proposal Network (RPN)



Figure 1: Given a set of object candidates generated from an image collection (left), our goal is to find same-class objects by searching for a
maximum edge weight clique in the associated graph. Each vertex in the clique (right) corresponds to a same-class object [Rao et al., 2019].

[Ren et al., 2015] effectively generates object candidates
which are then re-ranked to improve robustness against
background noises.

4. We trained a Triplet Network (TN) to obtain feature em-
beddings of object candidates, with the intention to con-
struct a reliable affinity measure between the candidates.

5. Our method outperformed state-of-the-arts on both the
PASCAL VOC 2007 image dataset [Everingham et al.,
2007] and the YouTube-Objects video dataset [Kalo-
geiton et al., 2016].

2 Related Work
The problem of same-class object co-localization has been
investigated extensively during the last decade. [Papazoglou
and Ferrari, 2013] model this task as a foreground object min-
ing problem, and they adopt Optical Flow and Gaussian Mix-
ture models to accomplish the task. [Cho et al., 2015] tackle
this co-localization problem by a part-based region matching
method and apply a probabilistic Hough transform to evaluate
each candidate correspondence. [Joulin et al., 2014] extend
the approach in [Cho et al., 2015] to co-localize objects in
video frames, and they utilize a Frank-Wolfe algorithm to op-
timize their quadratic programming algorithm. [Zhang et al.,
2015] apply a part-based object detector as well as a motion
aware region detector to generate object candidates, and they
further formulate this problem as a joint assignment problem
and then refine their solution by inferring shape likelihoods.
[Kwak et al., 2015] also focus on the problem of localizing
dominant objects in videos, in which they apply an iterative
process of detection and tracking. [Li et al., 2016] devise an
entropy-based objective function to learn a common object
detector, and they address the task of co-localization with a
Conditional Random Field (CRF) model. [Wei et al., 2017]
perform Principal Component Analysis (PCA) on the convo-
lutional feature maps of all images, and locate the most corre-
lated regions across images. [Wang et al., 2017] use segmen-
tations produced by Fully Convolutional Networks (FCN) as
object candidates, and they formulate the task of same-class
object co-localization as an N -Partite Graph Matching prob-
lem.

3 Modeling
Given a set of images I, we apply deep learning methods
to obtain a set of object candidates B from all images. To

be specific, we let B =
⋃

I∈I P(I) = {b1, · · · , bn}, where
P(I) is the set of object candidates extracted from image I ,
and n is the total number of candidates generated from all
images, so the size of B is n.

Intuitively, two objects are likely to be in the same class
if they look similar, so in solving the problem of same-class
object co-localization, we paid attention to visual similarity.
Given two object candidates bi and bj , we use s(bi, bj) to de-
note some certain similarity measure between them, then the
task of same-class object co-localization can be formulated
as searching for an optimal or near-optimal subset B∗ ⊂ B
which maximizes ∑

bi,bj∈B,bi ̸=bj

s(bi, bj),

with the constraint that at most one object candidate can be
selected from each image.

Then we turned the problem above into an MEWC prob-
lem as follows. We first constructed an associated graph G
with n vertices, in which each vertex vi represents an object
candidate bi.

To ensure that we will select at most one object candidate
from each image, we required the edges in G as follows. Two
vertices vi and vj are connected by an edge if their corre-
sponding object candidates bi and bj are from different im-
ages, otherwise, they are disconnected. Hence, if we obtain
a clique C from the associated graph G, any pair of vertices
in C must represent object candidates from different images
(See the left picture in Figure 1).

To maximize mutual similarity between selected object
candidates, we assigned each edge a positive weight as fol-
lows. An edge e = {vi, vj} has a weight wE(e) = s(bi, bj),
where bi and bj are the corresponding object candidates of vi
and vj respectively.

In this sense, the task of same-class object co-localization
is formulated as the MEWC problem and the obtained clique
contains objects that are probably in the same class (See the
right picture in Figure 1).

4 A Detailed Approach
In this section, we introduce details about constructing asso-
ciated graphs and local search for MEWC.

4.1 Choosing Object Candidates
As we see in Section 3, the vertices in our associated graph
correspond to object candidates from all images. To improve



MEWC Solvers Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse MBike Person Plant Sheep Sofa Train TV Avg
[Ma and Latecki, 2012] 63.0 45.7 56.1 51.9 14.3 47.8 71.9 61.1 36.2 72.3 46.0 57.2 61.3 79.6 62.3 34.3 69.8 39.3 59.4 9.8 52.0

[Wang et al., 2016] 61.3 68.3 61.2 48.1 16.8 67.7 76.9 58.5 41.8 72.3 24.5 63.9 68.3 75.5 69.0 28.6 76.0 47.2 62.1 68.4 57.8
[Wang et al., 2016]+BMS 63.9 68.3 60.9 50.3 49.2 66.7 76.9 59.3 41.1 72.3 23.0 65.1 68.3 77.1 69.8 27.8 76.0 45.9 62.8 68.4 59.7

[Adamczewski et al., 2015] 62.2 69.5 62.1 52.5 18.4 71.5 78.5 61.1 49.2 70.9 30.0 62.0 69.7 80.8 66.0 49.4 70.8 50.2 63.6 68.0 60.3
[Fan et al., 2017] 64.7 58.4 60.3 54.1 52.0 71.0 79.2 63.8 43.1 71.6 40.5 64.4 72.1 84.9 69.5 45.3 75.0 51.1 66.3 71.1 62.9

Table 1: Co-localization CorLoc (%) of different MEWC solvers on the PASCAL07 dataset

CNN Backbones RPN Objectness Object Proposal Re-ranking Triplet Loss Fine-tuning
Pre-trained VGG-f Model 31.2 53.8 59.3

Pre-trained VGG-16 Model 33.1 56.1 62.9

Table 2: Co-localization CorLoc (%) of different associated graph constructions on the PASCAL07 dataset

the quality of same-class object co-localization, we desired
to cover as many foreground objects as possible. However,
in solving the MEWC problem, the search space grows expo-
nentially wrt. the number of vertices in the associated graph,
i.e., the number of object candidates |B|. Thus, it is vital
to find a proper method to generate object candidates. Our
main idea for choosing object candidates is as follows. (1)
We adopted the Region Proposal Networks (RPN) [Ren et al.,
2015] to generate rectangular bounding boxes, each of which
contains a single object candidate. (2) Then we applied Non-
Maximum Suppression (NMS) to remove redundant boxes.
(3) Last we chose top-k scoring proposals in each image to
construct our associated graph.

In choosing the top-k scoring proposals, we considered
two different proposal scoring measures. The first one is
widely used and is based on the RPN objectness score of each
object candidate. The second one is described as follows.
Apart from object candidates, RPN also generates a vector of
class likelihoods, i.e., a probability distribution over differ-
ent classes, for each object candidate. Thus we proposed to
re-rank the object candidates according to the entropy of the
class distribution. Since the entropy is a measure of uncer-
tainty, it serves a similar purpose as the objectness score but
tend to be more accurate in this setting. Hence we can re-rank
the raw RPN proposals according to the entropy, and selected
the top-k scoring boxes with low uncertainty as object candi-
dates in each image.

4.2 Object Representation and Similarity Measure
As mentioned in Section 3, the edge weights in an associ-
ated graph represent visual similarity between object candi-
dates. Thus, we needed a suitable way to accurately represent
the object candidates and evaluate similarities between each
pair of them. In this paper, we employed the Triplet Network
framework [Hoffer and Ailon, 2015] to learn deep feature em-
beddings of the object candidates, because it makes similar
objects closer to each other and dissimilar ones farther from
each other in the specified metric space.

Suppose a pre-trained convolutional neural network (CNN)
is selected to extract deep features f(b;w) for each object
candidate b ∈ B, where w is the set of parameters of the
CNN. In our graph construction framework, a set of triplets
will then be constructed for fine-tuning the parameters w.
Each triplet consists of a reference object br, a positive ob-

ject bp and a negative object bn. More specifically, br and
bp are a pair of similar objects in the sense that they belong
to the same category, while br and bn are dissimilar which
means the opposite. In this sense, the hinge loss of a triplet is
defined as

l(br, bp, bn) = max{0, λ+ s(br, bn)− s(br, bp)}, (1)

where λ is a margin threshold indicating in which situation
l(br, bp, bn) will matter. More specifically, once s(br, bp) is
greater than s(br, bn) by λ or even more, l(br, bp, bn) will
make no contribution to our objective function (2).

To make similar objects closer and dissimilar ones farther,
the Triplet Network learning process tries to find a set of op-
timal parameters w to minize the sum of the hinge loss

L(T ) =
∑

br,bp,bn∈T

l(br, bp, bn) (2)

over a training set of triplets T .
After the optimization process above, we obtained deep

features f(b;w) which helped produce better similarity mea-
sures. In our work, we employed the cosine similarity be-
tween two CNN feature vectors f(bi;w) and f(bj ;w) as the
visual similarity s(bi, bj) in Equation (1) above, namely

s(bi, bj) =
f(bi;w)Tf(bj ;w)

∥f(bi;w)∥ · ∥f(bj ;w)∥
,

which is simple, neatly bounded and parameter free.

4.3 Local Search for MEWC
With an associated graph constructed above, we called a local
search algorithm named CERS in [Fan et al., 2017] to find
an optimal or near-optimal solution, in order to obtain same-
class objects across different images. This algorithm restarts
whenever it revisits a local optimum, and it exploits a hash
table to implement this idea approximately. To be specific, it
utilize a hash function as

hash(Bc) =

( ∑
bi∈Bc

2i

)
mod p, (3)

where i ∈ {1, · · · , n} is the index of bi in the entire object
candidate set B and p is a prime. If p is sufficiently large, the



Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse MBike Person Plant Sheep Sofa Train TV Avg
[Joulin et al., 2014] 32.8 17.3 20.9 18.2 4.5 26.9 32.7 41.0 5.8 29.1 34.5 31.6 26.1 40.4 17.9 11.8 25.0 27.5 35.6 12.1 24.6
[Cho et al., 2015] 50.3 42.8 30.0 18.5 4.0 62.3 64.5 42.5 8.6 49.0 12.2 44.0 64.1 57.2 15.3 9.4 30.9 34.0 61.6 31.5 36.6
[Li et al., 2016] 73.1 45.0 43.4 27.7 6.8 53.3 58.3 45.0 6.2 48.0 14.3 47.3 69.4 66.8 24.3 12.8 51.5 25.5 65.2 16.8 40.0

[Wang et al., 2015] 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
[Bilen et al., 2015] 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7
[Ren et al., 2016] 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.9 16.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9
[Wei et al., 2017] 67.3 63.3 61.3 22.7 8.5 64.8 57.0 80.5 9.4 49.0 22.5 72.6 73.8 69.0 7.2 15.0 35.3 54.7 75.0 29.4 46.9

[Wang et al., 2017] 80.1 63.9 51.5 4.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5
[Cinbis et al., 2016] 67.1 66.1 49.8 34.5 23.3 68.9 83.5 44.1 27.7 71.8 49.0 48.0 65.2 79.3 37.4 42.9 65.2 51.9 62.8 46.2 54.2

[Rochan and Wang, 2015] 78.5 63.3 66.3 56.3 19.6 82.2 74.7 69.1 22.4 72.3 31.0 62.9 74.9 78.3 48.6 29.3 64.5 36.2 75.8 69.5 58.8
Ours with VGG-f 59.7 67.1 60.3 46.4 51.2 68.8 75.9 57.9 40.4 77.3 21.5 64.6 65.2 74.7 67.3 41.6 77.1 48.0 60.9 60.9 59.3

Ours with VGG-16 64.7 58.4 60.3 54.1 52.0 71.0 79.2 63.8 43.1 71.6 40.5 64.4 72.1 84.9 69.5 45.3 75.0 51.1 66.3 71.1 62.9

Table 3: Co-localization CorLoc (%) of different methods on the PASCAL07 dataset

Method Aeroplane Bird Boat Car Cat Cow Dog Horse MotorBike Train Avg
[Prest et al., 2012] 51.7 17.5 34.4 34.7 22.3 17.9 13.5 26.7 41.2 25.0 28.5
[Joulin et al., 2014] 25.1 31.2 27.8 38.5 41.2 28.4 33.9 35.6 23.1 25.0 30.9

[Papazoglou and Ferrari, 2013] 65.4 67.3 38.9 65.2 46.3 40.2 65.3 48.4 39.0 25.0 50.1
[Zhang et al., 2015] 75.8 60.8 43.7 71.1 46.5 54.6 55.5 54.9 42.4 35.8 54.1

[Rochan and Wang, 2015] 56.0 30.1 39.6 85.7 24.7 87.8 55.6 60.2 61.8 51.7 55.3
Ours with VGG-f 48.5 74.4 52.8 61.6 59.4 69.3 71.4 68.5 73.6 43.0 62.3

Ours with VGG-16 44.3 68.6 56.7 63.5 50.0 70.7 71.2 75.9 73.8 55.5 63.0

Table 4: Co-localization CorLoc (%) of different methods on the YouTube-Objects dataset

probability of hash collision is negligible, so we simply set
p according to the memory available in the running environ-
ment.

We realized that [Chu et al., 2020] developed a local search
algorithm which is able to solve the MEWC problem here, yet
they did not test their algorithm in this application domain.

5 Experiments
To evaluate the performance of our method, we conducted
experiments on the PASCAL VOC 2007 image dataset [Ev-
eringham et al., 2007] and the YouTube-Objects video dataset
[Kalogeiton et al., 2016]. For evaluation, we adopted the
standard PASCAL criterion Intersection over Union (IoU), to
be specific, a predicted bounding box bp is correct if

IoU (bp, bgt) =
area(bp ∩ bgt)

area(bp ∪ bgt)
> 0.5,

where bgt is a ground-truth annotation of the bounding box.
Finally, we utilized the percentage of images with correct ob-
ject co-localization (CorLoc) [Li et al., 2016] as the evalua-
tion measure.

5.1 Experimental Setup
We adopted GPU to speed up deep learning processes and ex-
ploited pre-trained networks for higher accuracy and shorter
training-validation time. Also we fine-tuned the pre-trained
networks by Triplet networks for better accuracies in the task
of same-class object co-localization. Last we implemented
the high level part of our system in Matlab and it called the
local search solver CERS to find optimum or near-optimum
solutions to the MEWC problem.

Running Environments
We carried out experiments on a desktop with two Intel(R)
Core(TM) i7 CPUs (2.80GHz) and 64 GB memory, and we

also exploited a GeForce GTX Titan X GPU to train and test
related deep neural networks.

Pre-trained Networks
We built the RPN and the Triplet Network in our method upon
the VGG-f model [Simonyan and Zisserman, 2015] as well as
the VGG-16 model [Chatfield et al., 2014]. Compared to the
VGG-16 model, the structure of the VGG-f model is much
simpler and thus more computationally efficient. The VGG-f
and VGG-16 models are pre-trained on the ImageNet dataset
[Russakovsky et al., 2015] and fine-tuned on the Microsoft
COCO dataset [Lin et al., 2014]. All parameters were fixed
the same in the experiments unless explicitly stated.

Implementations
We programmed the high level part of our system in MAT-
LAB with some utilities written as MEX fles. As to the
phase of constructing associated graphs, we utilized the deep
learning frameworks Caffe and MatConvNet as carriers for
building the RPN and the Triplet Network. When solving the
MEWC problem, we called the CERS algorithm which was
implemented in C/C++.

Parameter Settings
We adopted default parameters to learn RPN and generated
object candidates and also used a threshold of 0.5 for the
NMS to remove redundant object proposals. In each im-
age, we selected the best k = 20 object candidates. We set
λ = 0.25 in the hinge loss function (1) of a single triplet. As
to the local search algorithm CERS for MEWC, it has a pa-
rameter p in Equation (3) which is required to be a prime. We
set it to 109 +7 and the hash table in it consumed memory of
around 1 GB.

Evaluation Protocol
As randomness may exist in different methods, in each table
we tested each method 10 times with different seeds on the



dataset and reported the average unless explicitly stated.

5.2 Performances on the PASCAL Dataset
We adopted the PASCAL VOC 2007 dataset [Everingham
et al., 2007] to evaluate the performances of object co-
localization in images. This dataset is split as a training-
validation set and a test set, each with about 5,000 im-
ages in 20 classes (See Table 1). We followed [Joulin et
al., 2014] to construct a collection of images for object co-
localization from the training-validation set and denoted it as
PASCAL07. This is fine in our framework, since our RPN
and Triplet networks are trained on the ImageNet and COCO
datesets instead of this PASCAL07. In other words, we kept
the test set secret during our training and validation processes.

Individual Impacts of MEWC Solvers
To confirm the individual impact of our selected MEWC
solver, i.e., CERS, we first replaced it with other state-of-
the-art MEWC algorithms and performed experiments on the
same set of graph instances. These instances were generated
from PASCAL07 based on the VGG-16 model. Since PAS-
CAL07 has images from 20 different classes, we constructed
20 different graphs, one graph for each image class. The
details about associated graph constructions can be found in
Sections 4.1 and 4.2. As a result, the average number of ver-
tices in the constructed graphs is 6081.67, and the average
number of edges is 2.16 × 107, thus the average density of
the graphs is 0.9962.

In Table 1, we presented co-localization accuracies (Cor-
Loc) of different MEWC solvers when embedded in our
framework. We showed results of each solver in a single row,
including results for the 20 classes in PASCAL07 and also
the average result over those 20 classes.

The method in [Ma and Latecki, 2012] solves the MEWC
problem in the relaxed continuous domain and it proposes a
modified Frank-Wolfe algorithm to tackle this problem. Note
that in [Wang et al., 2016], there are two versions of their
solver, LSCC and LSCC+BMS, therefore in Table 1, we pre-
sented their results in two rows. CERS [Fan et al., 2017]
inherits much from MN/TS [Wu et al., 2012], LSCC [Wang
et al., 2016] and LMY-GRS [Fan et al., 2016], and they four
form a family of local search solvers. The algorithm TBMA
[Adamczewski et al., 2015] also adopts local search to solve
the MEWC problem directly in the discrete domain like the
family above, and it restarts if the quality of candidate solu-
tions has not been improved for a specified number of steps.

From the last column in Table 1, we found that CERS is
the most suitable solver in our framework.

Individual Impacts of Associated Graph Constructions
To evaluate how our algorithm depended on the performance
of the deep learning method used, we proposed several vari-
ants by disabling one or more processes. The detailed results
are shown in Table 2.

We utilized different CNN models to extract object candi-
date features, and then applied the cosine similarity on these
features. In Section 4.1, we mentioned that there are two dif-
ferent proposal scoring measures. The first one is to use the
RPN objectness score. The second one is to utilize entropy-
based re-ranking. Comparing Columns 2 and 3, we find that

the second ranking criteria significantly outperformed the first
one. In addition, Column 4 and those previous ones presents
the contribution of the Triplet Network learning framework.
Last, the rows in this table show the superiority of the VGG-
16 model over the VGG-f model in terms of accuracies.

In a word, the experiments above validated that the perfor-
mance of object co-localization benefits from proper choices
of the object candidate generation and the feature embedding
scheme.

Effectiveness of Our Whole Method
We reported the accuracy of different object co-localization
methods on the PASCAL07 dataset in Table 3 which follows
the same presentation protocol as Table 1.

The results of the competitors were directly taken from the
corresponding literature, and the most important competitors
were briefly introduced in Section 2. Among those methods
which adopt deep CNN features as visual descriptors [Li et
al., 2016; Wang et al., 2015; Bilen et al., 2015; Ren et al.,
2016; Wei et al., 2017; Cinbis et al., 2016; Rochan and Wang,
2015], our method demonstrates superior performances. The
experiments testified the effectiveness of our whole object co-
localization method in images.

Last we compared our formulation here with an earlier one
in [Fan et al., 2017] which also adopts CERS for MEWC. Ex-
perimental results on PASCAL07 showed that their accuracy
rate is 57.2% which is lower than that of each of ours.

5.3 Performances on the YouTube-Objects Dataset
We used the Youtube-Objects dataset [Kalogeiton et al.,
2016] for object co-localization in videos. It contains videos
collected from YouTube with 10 object classes. There are
about 570,000 frames with 1,407 annotations in the first ver-
sion of the dataset [Prest et al., 2012]. To our best, it is
the largest available video dataset with bounding-box an-
notations on multiple classes. To avoid possible confusion
when applying different video decoders, we used the indi-
vidual video frames after decompression in our experiments.
Moreover, we only performed object co-localization on video
frames with ground-truth annotations, following the practice
in [Joulin et al., 2014]. Furthermore, we made no use of ad-
ditional spatial-temporal information. The Youtube-Objects
dataset comes with the test videos divided in 10 classes
according to which dominant object occurs most in them.
Hence, we constructed 10 different graphs for this dataset.

Table 4 follows the same presentation protocol as Tables 1
and 3, and it summarizes the co-localization accuracy of dif-
ferent methods on the YouTube-Objects dataset. Among all
the methods, [Zhang et al., 2015; Rochan and Wang, 2015]
also utilized deep networks for visual representation. The re-
sults justified that the proposed object co-localization method
is also effective for mining same-class objects in videos.

6 Conclusions and Future Works
In this paper, we addressed the task of same-class object
co-localization which aims at finding a group of maximum
mutually-similar objects. We formulated this problems as the
MEWC problem and adopted a local search solver to search
for an optimal or near-optimal solution. Experimental results



not only shows that our whole method significantly outper-
formed state-of-the-arts, but also confirms the individual im-
pacts of our key components.

However, in reality there can be more than one object in a
single image that belongs to a certain class. Also there can
be no objects in a single image which belongs to a particular
class. Hence, we will extend the task in this paper to cover
these cases in future.
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