
Ranking Cost: Building An Efficient and Scalable Circuit Routing Planner with
Evolution-Based Optimization

Shiyu Huang1 , Bin Wang2 , Dong Li2 , Jianye Hao2 , Ting Chen1 and Jun Zhu1

1Tsinghua University
2Huawei Noah’s Ark Lab

hsy17@mails.tsinghua.edu.cn, {wangbin158,lidong106,haojianye}@huawei.com,
{tingchen,dcszj}@tsinghua.edu.cn

Abstract
Circuit routing has been a historically challenging
problem in designing electronic systems such as
very large-scale integration (VLSI) and printed cir-
cuit boards (PCBs). The main challenge is that
connecting a large number of electronic compo-
nents under specific design rules involves a very
large search space. Early solutions are typically
designed with hard-coded heuristics, which suffer
from problems of non-optimal solutions and lack
of flexibility for new design needs. Although a
few learning-based methods have been proposed
recently, they are typically cumbersome and hard
to extend to large-scale applications. In this work,
we propose a new algorithm for circuit routing,
named as Ranking Cost, which innovatively com-
bines search-based methods (i.e., A* algorithm)
and learning-based methods (i.e., Evolution Strate-
gies) to form an efficient and trainable router. In
our method, we introduce a new set of variables
called cost maps, which can help the A* router
to find out proper paths to achieve the global ob-
jective. We also train a ranking parameter, which
can produce the ranking order and further improve
the performance of our method. Our algorithm is
trained in an end-to-end manner and does not use
any artificial data or human demonstration. In the
experiments, we compare with the sequential A*
algorithm and a canonical reinforcement learning
approach, and results show that our method outper-
forms these baselines with higher connectivity rates
and better scalability.

1 Introduction
As described in Moore’s Law [Schaller, 1997], the number
of transistors in a dense integrated circuit (IC) increases ex-
ponentially over time and the complexity of chips becomes
higher and higher. Such high complexity makes the IC design
a time-consuming and error-prone work. Thus more capable
automatic design systems, such as electronic design automa-
tion (EDA) tools, are needed to improve the performance.
In the flow of IC designs, we need to find proper paths to
place wires which connect electronic components on ICs, and

these wires need to achieve expected connectivity under cer-
tain constraints. One of the most important constraints is that
wires on the same layout should not intersect. Besides, to re-
duce the signal propagation delay, the wire-length should be
minimized. This is a critical and challenging stage in the IC
design flow [Hu and Sapatnekar, 2001], known as circuit rout-
ing, which has been studied by lots of researchers [Kramer,
1984; He and Bao, 2020].

Circuit routing involves a large number of nets (a net
is a set of vertices or pins with the same electrical prop-
erty) to be routed, which is computationally expensive and
makes manual design extremely time-consuming [Coombs
and Holden, 2001]. Even under the simplest setting, where
only two pairs of pins need to be routed, it is an NP-complete
problem [Kramer, 1984]. Although lots of circuit routing
algorithms have been proposed [Zhang, 2016], there re-
main two major challenges: (1) Early solutions [Hu and
Sapatnekar, 2001] are typically designed with hard-coded
heuristics, which suffer from problems of non-optimal so-
lutions [Zhang, 2016] and lack of flexibility over new de-
sign needs. Therefore, a more powerful routing method that
does not depend on domain knowledge is highly desired.
(2) Although a few learning-based methods have been pro-
posed [Liao et al., 2020; He and Bao, 2020] recently, their
methods are hard to extend to large-scale applications. In real
settings, there are lots of components and nets on a single
chip, which shows greater demand for the scalability of rout-
ing algorithms.

To relieve these problems, we propose a novel algorithm,
denoted as Ranking Cost (RC), for circuit routing. We in-
novatively combine search-based methods (i.e., A* algo-
rithm, the most commonly used algorithm in circuit rout-
ing tasks) and learning-based methods (i.e., Evolution Strate-
gies [Salimans et al., 2017], a powerful black-box opti-
mization method) to form a trainable router with proper
parametrization. Our method is flexible for integrating new
constraints and rules so long as they can be merged into a
global objective function. Moreover, our method is an one-
stage algorithm, which optimizes the global objective func-
tion directly. In our method, we introduce a new set of vari-
ables called cost maps, which can help the A* routers to find
out proper paths to achieve the global objective. We also
train a ranking parameter, which can produce the ranking
order and further improve the performance of our method.

(a) (b) (c)

(d) (e) (f)

Figure 1: Yellow vertices are the start vertices, green vertices are the
end vertices and black blocks are obstacles where paths can not pass
through. (a) Examples of maps without obstacle. (b) Examples of
maps with obstacles. (c) Circuit routing results derived by our algo-
rithm. In (d)-(f), (Si, Ei), i ∈ {1, 2} are two pairs of vertices which
need to be connected. (d) and (e) show that sequential A* algorithm
will greedily find the shortest path of one pair, and it fails to obtain
a global solution. (f) shows the solution found by our algorithm,
which can connect the two pairs successfully.

In the experiments, we compare our method with the com-
monly used A* method and a canonical reinforcement learn-
ing approach, and results show that our method outperforms
these baselines with higher connectivity rates. Our ablation
study also shows that the trained cost maps can capture the
global information and lead to a reasonable routing solution.
We also show that our method is scalable to larger maps.
However, recent learning-based methods [Liao et al., 2020;
He and Bao, 2020] only conduct experiments on small maps.

2 Related Work
We summarize the related work on circuit routing.

2.1 Heuristic Algorithms for Circuit Rouging
The routing problem can be heuristically separated into two
stages, the first being the global routing step [Mo et al., 2001;
Cho et al., 2007], followed by detailed routing [Ho et al.,
1991; Mandal et al., 2020; Chen and Chang, 2009]. On the
one hand, there are multiple heuristic-based approaches for
global routing including regionwise routing [Hu and Sapat-
nekar, 2001], force-directed routing [Mo et al., 2001], and
rip-up and reroute [Cho et al., 2007]. Besides, [Shi et al.,
2016] proposes a method to improve the distribution of con-
gestion in global routing, and [Shi and Davoodi, 2017] pro-
pose a framework to analyze local congestion for global rout-
ing. On the other hand, the most commonly used detailed
routing algorithms are channel routing and its variants [Ho et
al., 1991; Mandal et al., 2020], which decompose the rout-
ing region into routing channels and generate wires in these
channels [Chen and Chang, 2009]. One main issue of the
two-stage methods is that these two stages do not always co-

ordinate well [Shi and Davoodi, 2017], which results in enor-
mous difficulty in joint optimization. Instead, our method is
a one-stage algorithm and new design constraints can be sim-
ply involved in the objective function without changing the
algorithm itself.

A more straightforward strategy for circuit routing is to
select a specific order and then route nets sequentially, e.g.,
sequential A* algorithm and Lees algorithm [Huang et al.,
2014; Malavasi and Sangiovanni-Vincentelli, 1993]. The ma-
jor advantage of this type of approaches is that the congestion
information for previously routed nets can be taken into con-
sideration while routing the current one. However, the draw-
back of these sequential approaches is that the quality of the
solution is very sensitive to the orders [Zhang, 2016]. More-
over, earlier routed paths only focus on finding their own best
solutions and are impossible to take into account the situation
of subsequent paths. Such greedy strategies may make a solv-
able circuit routing problem insolvable. Figure 1 shows an
example that the sequential A* algorithm will fail to handle.
In this example, there are two pairs of points to be routed,
i.e., we should connect start vertices Si and end vertices
Ei, i ∈ {1, 2}, respectively. If we connect the pair (S1, E1)
first in its shortest path, it will make (S2, E2) disconnected
as shown in Figure 1(d), and vice versa (Figure 1(e)). But
this case can be solved easily by our algorithm as shown in
Figure 1(f), which means that our algorithm can take into ac-
count the global information when generating each path.

3 Background and Notations
In this section, we formalize the circuit routing problem first
and then give a brief introduction to the OpenAI-ES algo-
rithm [Salimans et al., 2017].

3.1 Circuit Routing
Circuit routing is a path search problem, where the goal is
to find non-intersecting paths that connect an arbitrary num-
ber of pairs of vertices. It can be formalized as a grid
graph G = (V,E), where each vertex vi ∈ V represents
an intersection on the grid, and each edge eij ∈ E repre-
sents the path between vi and its 1-hop neighbor vj ∈ V .
And the non-routable obstructive vertices form an obstacle
set, denoted as O ⊂ V . In circuit routing, a net N =
{vn1, vn2, ...} ⊂ V is a set of vertices that need to be con-
nected and a multi-vertex net can be decomposed into mul-
tiple two-vertex nets via a minimum spanning tree (MST)
or a rectilinear Steiner tree (RST) [de Vincente et al., 1998;
Hu and Sapatnekar, 2001]. Following [He and Bao, 2020],
we simplify this problem by letting each net only contain two
vertices, i.e, a two-vertex net is defined as N = {vs, ve} with
a start vertex vs and an end vertex ve. The net should be con-
nected by a path P = [v1, v2, ..., vn] with vs = v1, ve = vn
and P∩O = ∅. We use |P | to represent the length of the path
P . Given a set N of nets {Ni}, we need to find a set P of
paths {Pi} that connect these nets. A reasonable routing plan
for a given set of nets is that all the paths do not share any
vertex. In some cases, the routing problem does not have a
solution because such a non-intersecting set P does not exist.
In circuit routing, the commonly used objective is minimizing

the total length of paths. Given a solution P , the total length
of paths is defined as L =

∑
P∈P |P |.

3.2 Evolution Strategies
To optimize the parameters in our algorithm, we need a
powerful black-box optimization method. Actually, evo-
lution Strategies (ES) is a class of black-box optimization
methods [Rechenberg, 1994; Hansen and Ostermeier, 2001].
Recently, an evolution strategy variant, referred to as the
OpenAI-ES [Salimans et al., 2017], has attracted attention
because it could rival the performance of modern deep re-
inforcement learning methods on multiple control tasks. In
the OpenAI-ES, there is a reward function, denoted as F (ψ),
where ψ is a solution vector, sampled from a probability dis-
tribution function ψ ∼ pθ(ψ). The goal is to maximize the
expected value J(θ):

max
θ
J(θ) = Eψ∼pθ [F (ψ)]. (1)

We can use the gradient ascent to optimize θ:

θ ← θ + α∇θJ(θ), (2)

where α is the learning rate. In the OpenAI-ES, a score func-
tion estimator is used to calculate the gradient, which is sim-
ilar to REINFORCE [Williams, 1992]:

∇θJ(θ) = ∇θEψ∼pθ [F (ψ)] = Eψ∼pθ [F (ψ)∇θ log pθ(ψ)]. (3)

Usually, pθ is an isotropic multivariate Gaussian with mean
θ and fixed covariance σ2I . And the expected value can be
rewritten as Eψ∼pθ [F (ψ)] = Eϵ∼N (0,I)[F (θ+σϵ)]. Thus the
gradient estimator changes to:

∇θJ(θ) = ∇θEϵ∼N (0,I)[F (θ + σϵ)]

=
1

σ
Eϵ∼N (0,I)[F (θ + σϵ)ϵ], (4)

where ϵ is sampled from a standard normal distribution. Once
we form an objective function J(θ), the gradient∇θJ(θ) can
be approximated via Eq. (4) and parameters θ can be updated
via Eq. (2).

4 Methodology
In this section, we first introduce the Ranking Learning algo-
rithm and then the Cost-Map Learning algorithm. At last, we
give out our final algorithm (Ranking Cost) and its training
strategy.

4.1 Sequential A* with Ranking Learning
The A* algorithm can be used to find the shortest path in
a two-vertex net N = {vs, ve}, which is considered more
efficient than breadth-first search. A* finds a path between a
start vertex vs and an end vertex ve, with a priority function
defined as:

s(v) = g(v) + h(v), (5)
where v is a vertex in the graph, g(v) represents the total
length from vs to the current vertex v, and h(x) represents
the future heuristic cost from v to the end vertex ve. The h(x)
is often set to the Euclidean distance or Manhattan distance.
In a circuit routing problem, there are k nets to be routed.

Given a specific ranking order R, we can apply the A* algo-
rithm to each net sequentially. For example, if there are 3 nets
{N1, N2, N3} to be routed and a ranking order R = (2, 1, 3)
is given. We can apply A* to these 3 nets following the order
N2 → N1 → N3. After the routing procedure, we can get
a total path length from this ranking order, denoted as L(R).
Different ranking orders will result in different total lengths.
We can go through all the ranking orders and get their cor-
responding total lengths. The ranking order with minimum
total length can be used as the final solution. However, this is
unacceptable in time complexity because a routing problem
with k nets has O(k!) different ranking orders.

To relieve the problem of combinatorial explosion of rank-
ing orders, we propose a method to learn the ranking or-
der. We define a k-dimension ranking parameter θr =
(β1, β2, ..., βk). And the ranking order is determined com-
pletely by the ranking parameter. More concretely, the order
of values in θr is exactly the routing order, and the net with
the largest value will be routed first and the rest may be de-
duced by analogy. For example, given a ranking parameter
θr = (0.5, 0.2, 0.4), we have β1 > β3 > β2 and the cor-
responding ranking order will be Rθr = (1, 3, 2). And the
ranking parameter will determine the final routing result and
also the total path length. We define a reward function over
the ranking parameter:

F (θr) = −L(Rθr), (6)

where L(Rθr) is the total length when taking the order Rθr ,
and less length leads to larger reward. As described in Sec-
tion 3.2, we define the expected value over F (·) as:

J(θr) = Eψ∼pθrF (ψ) = Eϵ∼N (0,I)F (θr + σϵ). (7)

The gradient ∇θrJ(θr) can be estimated via Eq. (4), and θr
can be updated via Eq. (2). At every training step, we sample
a fixed number of noise vectors from Gaussian, add them to
the ranking parameter and then evaluate all the new ranking
parameters. The reward function F (·) will return a group of
scalar rewards and the ranking parameter will be updated with
these rewards. In this way, we can train a ranking parameter
θr to approach the minimal total length L.

As mentioned in Section 2.1, a sequential routing algo-
rithm may make a solvable circuit routing problem insolv-
able. And even a method with a learned ranking order will
still suffer from this problem. In the following section, we
will introduce how our method could overcome this problem
by coupling the A* algorithm with cost maps.

4.2 Circuit Routing with Cost Maps
As introduced in the previous section, g(v) in Eq. (5) repre-
sents the total length from start vertex vs to current vertex v,
thus the A* algorithm can only search for the shortest path of
the current net and it cannot take into account the information
of following paths. Our goal is to add global information to
the A* routers so that these routers can cooperate to achieve
their common objective. First, for each net Ni, i ∈ {1, ..., k},
we define its cost map as Ci = (c1, c2, ..., cm) ∈ Rm, where
m = |V | is the number of vertices in graph G. Therefore,
there is a total of k cost maps, and all the cost maps can be
learned with our algorithm. We apply a cost-map function

C(i, v) = c, c ∈ Ci to simplify the notation. In this way, we
can reformulate the A* algorithm by adding the cost maps:

s(v) = g(v) +

k∑
i=1

C(i, v) + h(v), (8)

where g(v) and h(v) are with the same definitions as in
Eq. (5). The cost-map enhanced A* algorithm reveals two
key points: (1) When removing g(v) and h(v) from Eq. (8),
it will degenerate into a pure learning-based algorithm and the
path will be determined completely by the cost function. (2)
When removing the cost functions or set them to zero (i.e.,
C(i, v) = 0), it is a pure search-based algorithm. Hence,
it is a method which combines the searched-based algorithm
and the learning-based algorithm and could take advantage
of both sides. Firstly, the A* search makes our method eas-
ier to find a connected path in a complex environment, while
it is hard for learning-based methods to find a connected
path [Tamar et al., 2016]. Second, the global information
can be merged into cost maps and the global objective can be
approached by tuning the cost maps.

To learn the cost maps, we first define a cost-map param-
eter θc ∈ Rk×m and the values in cost maps are defined as
cj = max(0, θc[i, j]), cj ∈ Ci. Given a ranking order R and
cost maps, we can route the nets sequentially using the cost-
map enhanced A* and a total path length L will be obtained
from the routing result. Similar to Eq. (6), we define a re-
ward function over the cost-map parameter and also its the
expected value:

F (θc) = −L(R,Cθc),
J(θc) = Eψ∼pθcF (ψ) = Eϵ∼N(0,I)F (θc + σϵ),

(9)

where Cθc presents the cost maps derived from θc, and θc
can be updated via Eq. (2). By iteratively executing the A*
search and cost-map learning step, our method could solve
some hard problems that a sequential routing algorithm can
not solve as shown in Figure 1. In the next section, we will in-
troduce how cost-map learning can couple with ranking learn-
ing and how to train the algorithm efficiently in practice.

4.3 Ranking Cost Algorithm
Our final algorithm, denoted as Ranking Cost (RC), can learn
the ranking parameter θr and cost-map parameter θc jointly.
In Eq. (8), all the cost maps are used when calculating the pri-
ority function and the ranking order has no impact on the cost
maps. To learn the cost-map with ranking order, we change
the priority function to:

sj(v) = gj(v) +

k∑
i=j+1

C(i, v) + hj(v), (10)

where sj(v) is the priority function for the net whose ranking
order is the j-th. This modification is reasonable because the
earlier routed nets will use more cost maps and observe more
global information. For example, when routing the first net,
its ranking index is j = 1 and it will use all the rest k − 1
cost maps. As a result, the first routed path focuses more on
its impact on other unrouted nets. When routing the last net,

its ranking index is j = k and no cost map will be used. As a
result, the last net is routed via a normal A* algorithm and the
searched solution is the shortest path at the current situation.
As all the previous nets have been routed, the best way to
route the last net is just to find out the shortest path. Our
RC algorithm achieves this naturally and makes it flexible for
arbitrary ranking orders. When the ranking order changes,
the order and the usage of cost maps change accordingly. In
this way, the reward function can be defined as:

F (θr, θc) = −L(Rθr , Cθc), (11)

and both θr and θc can be updated via the OpenAI-ES algo-
rithm. Actually, the reward function F can be integrated with
arbitrary metrics, such as the signal latency. Thus the cost
maps are free to adapt to new constraints and design rules.

In the OpenAI-ES algorithm, we will sample a fixed num-
ber of Gaussian noises and add them to the original parame-
ters to form new parameters. These new parameters are then
fed into n evaluators (or workers). The evaluator has an inde-
pendent environment and executes the algorithm based on re-
ceived parameters. Finally, each evaluator will return a scalar
reward. To stabilize the training process, we normalize col-
lected rewards {r1, ..., rn} from all the evaluators:

ri = (ri − rmean)/rstd, (12)

where rmean and rstd are the mean and standard deviation of
all the rewards.

To further improve the final results, we add a post-
processing step to the solution obtained from the Ranking
Cost algorithm. In the post-processing step, we will choose
a connected path and re-plan it using the canonical A* algo-
rithm while keeping other paths fixed. If we find a shorter
path during the re-planning, we will update the current path
to the new one. This post-processing step will be iteratively
applied on each path until all the paths can not be updated. In
practice, all the evaluators can execute in parallel as proposed
in [Salimans et al., 2017].

5 Experiments
In this section, we will compare our proposed method with
some other baselines. We will also study how ranking learn-
ing and cost maps work in our algorithm. Finally, we further
show the scalability of our algorithm for larger applications.

5.1 Methods Evaluation
To evaluate our algorithm, we build a grid map simulator as
the test environment. We construct 300 maps with three dif-
ferent sizes: 16 × 16, 32 × 32 and 64 × 64. These maps are
split into two types, i.e., a simple one without obstacle and a
more complex one with obstacles. Figure 1(a) and Figure 1(b)
show some of the maps used in our experiments. Algorithms
will be evaluated on these maps, and the success rates and the
average of total lengths will be reported. Our experiments are
performed on a desktop machine with 128 GB RAM and one
64-core CPU. More details about the maps can be found in
the supplementary material.
Baselines:
Sequential A*: Sequential A* is a common used search-
based algorithm in circuit routing. It routes nets with a

16× 16 (4 pairs) 32× 32 (32 pairs) 64× 64 (10 pairs)
no obstacle no obstacle no obstacle

Seq A*(5) 0.92±0.02(37.0±0.16) 0.96±0.01(109.9±0.36) 0.76±0.04(434.2±5.06)
Seq A*(200) 0.96±0.0(36.5±0.0) 1.0±0.0(107.0±0.0) 0.84±0.0(400.0±1.11)

VINs 0.86±0.0(37.1±0.27) 0.52±0.03(124.1±1.3) 0(-)
CML 0.93±0.0(38.1±0.02) 0.98±0.0(111.3±2.0) 0.88±0.0(457.7±0.0)

Ranking Cost I 1.0±0.0(36.5±0.02) 1.0±0.0(108.2±0.32) 0.86±0.0(417.1±0.0)
Ranking Cost II 1.0±0.0(36.5±0.02) 1.0±0.0(108.2±0.34) 0.86±0.0(413.8±0.0)

with obstacles with obstacle with obstacle
Seq A*(5) 0.92±0.01(36.3±0.09) 0.53±0.02(105.4±0.73) 0.1±0.03(384.0±13.65)

Seq A*(200) 0.96±0.0(36.1±0.0) 0.78±0.0(103.8±0.0) 0.26±0.01(367.5±0.0)
VINs 0.87±0.01(36.4±0.16) 0.21±0.02(114.7±2.09) 0(-)
CML 0.9±0.0(36.8±0.09) 0.67±0.01(104.4±0.31) 0.16±0.0(405.5±0.0)

Ranking Cost I 0.98±0.0(36.1±0.02) 0.82±0.0(103.8±0.0) 0.32±0.0(360.5±0.0)
Ranking Cost II 0.98±0.0(36.1±0.02) 0.82±0.0(103.8±0.0) 0.32±0.0(358.5±0.0)

Table 1: Evaluation results of different algorithms over 6 seeds. Two values and their corresponding standard deviations are reported. The
first value is the success rate (the higher the better) and the second value in the bracket is the common average length (the lower the better).
Our methods achieve the best performance on most of the maps. The comparison between CML and RC shows that the ranking parameter
learning can improve the performance of our algorithm.

Seq A*(5) Seq A*(200) VINs CML Ranking Cost I Ranking Cost II
0.8 sec/map 41.5 sec/map 1.4 sec/map 37.5 sec/map 38.3 sec/map 38.3 sec/map

Table 2: The wallclock time of different algorithms. The Ranking Cost algorithm takes more running time, since it involves a learning
procedure when solving each task. But the time consumption is acceptable, i.e., our algorithm takes less than one minute to get the solution,
and it is worthy to sacrifice more time to earn better solutions.

specific ranking order and different orders will lead to
different results. In the experiments, we randomly sample 5
different ranking orders and run the algorithm 5 times. The
best score of 5 runs will be reported. To build a stronger
baseline, we further randomly sample 200 different ranking
orders and the best score of 200 runs will be reported.
Value Iteration Networks (VINs) [Tamar et al., 2016]:
The VIN is a learning-based approach for routing on grid
maps. VINs use the value iteration from reinforcement
learning and can achieve better performance compared with
supervised models. We apply VINs to the circuit routing
problem by sequentially executing it on each net. Similar
to the sequential A* algorithm, we randomly sample five
different ranking orders and the best score of five runs will
be reported.
Cost-Map Learning (CML): We construct a Cost-Map
Learning algorithm from the Ranking Cost. In the CML, the
ranking parameter will not be trained (the ranking order is
fixed) and only the cost-map will be trained.

We also implement two versions of the Ranking Algorithm,
i.e., the version without post-processing step is denoted as
Ranking Cost I and the version with post-processing step is
denoted as Ranking Cost II. Table 1 shows the evaluation re-
sults of different algorithms on all the maps over 6 seeds.
Two values and their corresponding standard deviations are
reported for each algorithm. The first value is the success rate
(the higher the better) and the second value in the bracket is
the common average length (the lower the better). Our fi-
nal algorithm (Ranking Cost) achieves the best performance

on most of the maps. On the most complex maps (with
size 64 × 64, obstacles and 10 pairs of vertices), Ranking
Cost outperforms other baselines by a large margin, which
implies that our method has greater advantage on handling
larger maps. The comparison between Seq A*(200) and Rank-
ing Cost shows that our method can achieve the performance
which the fully sampled A* will never achieve. Taking maps
with the size of 16x16 (4 pairs) for example, there are only
4! = 24 orders, and we sampled all the possible orders for
the A* since our maximum sampling number for is 200. But
the final connecting rate of the A* is 96%. However, our RC
algorithm can reach 100% connecting rate. Even given the
full sampling, the A* will fail in many cases. Moreover, the
comparison between Cost-Map Learning and Ranking Cost
shows that the ranking parameter learning can further im-
prove the performance of our algorithm. Table 2 shows the
wallclock time of different algorithms. The comparison be-
tween Ranking Cost I and Ranking Cost II shows that our
post-processing step can help to reduce the total connected
length with insignificant time-consuming.

5.2 Ablation Study
In this section, we study how each part of our algorithm works
and the scalability of our algorithm.

Impact of Ranking Orders
To show the impact of ranking learning, we increase the sam-
ple number of orders for sequential A* and use the Ranking
Learning algorithm described in Section 4.1 as a comparison.
Figure 2(a) shows the curve of the changes in success rates

(a) (b) (c) (d)

Figure 2: (a) The curve of success rates and sample numbers and the experiment is conducted on maps with size of 64×64 and with obstacles.
Our learned ranking order achieves better performance than randomly sampled orders. (b) Trained cost map of the example from Figure 1(f).
There are two larger cost values (the yellow grids) in the cost map, which will give out a large cost if the path chooses to go through here. As
a result, the first pair ((S1, E1)) will not take its shortest path which will block the second pair((S2, E2)). It shows that cost maps can capture
global information and guide routers to complete the task successfully. (c) An example of routing results of the Ranking Cost algorithm on
a large map with the size of 150 × 150 and with 15 pairs, which implies that our method could be adapted to larger scales of applications.
(d) An example shows the routing result of the Ranking Cost algorithm with the post-processing step, which implies that the post-processing
step could improve the final planning result.

with different order sample numbers. The result shows that
we can improve the success rate by increasing the order sam-
ple number, but it is hard to further improve the performance
by linearly increasing the sample number as the order com-
plexity is O(k!), where k is the number of pairs (or nets).
However, our learned ranking order can achieve much better
performance than randomly sampled orders.

Impact of Cost Maps
To study the impact of cost maps, we fix the ranking order
and only train the cost-map parameter. We use the example
map showed in Figure 1(f) and the ranking order is fixed as
R = (1, 2). Because the ranking order is fixed and there are
only two cost maps, only the second cost map will be used
when routing the first pair (i.e., (S1, E1)). Finally, we visu-
alize the trained cost maps as shown in Figure 2(b). There
are two larger cost values (the yellow grids) in the cost map,
which will give out a large cost if the path chooses to go
through here. As a result, the first pair ((S1, E1)) will take
the path as shown in Figure 1(f) instead of taking its short-
est path which will block the second pair((S2, E2)). It shows
that our cost maps can capture global information and guide
routers to approach global optima.

Scalability of Ranking Cost Algorithm
In [Liao et al., 2020], their algorithm is only evaluated on the
maps with the size of 8 × 8. In [He and Bao, 2020], their al-
gorithm is evaluated on the maps with the size of 30 × 30
and with only 5 pairs. The search space is huge in their
methods, which prevents them from applying to larger maps.
To test the scalability of our algorithm, we apply our algo-
rithm on larger maps with the size of 150 × 150 and with 15
pairs. Our algorithm solves such large maps within 3 min and
Figure 2(c) shows the routing result of our method without
post-processing step, which implies that our method could be
adapted to larger scales of applications. Figure 2(d) shows the
routing result of the Ranking Cost algorithm with the post-

processing step, which implies that the post-processing step
could improve the final planning result.

6 Discussion
In this paper, we propose a novel algorithm, called Rank-
ing Cost, to solve the historically challenging circuit routing
problem. In our method, we innovatively combine search-
based algorithms and learning-based algorithms to form an
efficient and trainable router under a proper parameterization.
Our method is a one-stage circuit routing algorithm which
can optimize the global objective function directly, and it is
easy to implement and flexible for new design rules and con-
straints. Experimental results show that our method is power-
ful and scalable to more complex tasks. In the future, we will
try to explore faster optimizer for the Ranking Cost param-
eters and extend our algorithm to broader applications, such
as pedestrian path prediction and robot navigation. Lastly,
we do not believe our work has broader negative societal im-
pacts, as we focus on developing circuit routing algorithms
with evolution-based methods.

References
[Chen and Chang, 2009] Huang-Yu Chen and Yao-Wen

Chang. Global and detailed routing. In Electronic Design
Automation, pages 687–749. Elsevier, 2009.

[Cho et al., 2007] Minsik Cho, Katrina Lu, Kun Yuan, and
David Z Pan. Boxrouter 2.0: Architecture and imple-
mentation of a hybrid and robust global router. In 2007
IEEE/ACM International Conference on Computer-Aided
Design, pages 503–508. IEEE, 2007.

[Coombs and Holden, 2001] Clyde F Coombs and Happy T
Holden. Printed circuits handbook, volume 1. McGraw-
Hill New York, 2001.

[de Vincente et al., 1998] J de Vincente, Juan Lanchares,
and Román Hermida. Rsr: A new rectilinear steiner min-
imum tree approximation for fpga placement and global
routing. In Proceedings. 24th EUROMICRO Conference
(Cat. No. 98EX204), volume 1, pages 192–195. IEEE,
1998.

[Hansen and Ostermeier, 2001] Nikolaus Hansen and An-
dreas Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evolutionary compu-
tation, 9(2):159–195, 2001.

[He and Bao, 2020] Youbiao He and Forrest Sheng Bao. Cir-
cuit routing using monte carlo tree search and deep neural
networks. arXiv preprint arXiv:2006.13607, 2020.

[Ho et al., 1991] T-T Ho, S Sitharama Iyengar, and S-Q
Zheng. A general greedy channel routing algorithm. IEEE
transactions on computer-aided design of integrated cir-
cuits and systems, 10(2):204–211, 1991.

[Hu and Sapatnekar, 2001] Jiang Hu and Sachin S Sapat-
nekar. A survey on multi-net global routing for integrated
circuits. Integration, 31(1):1–49, 2001.

[Huang et al., 2014] Tsung-Wei Huang, Pei-Ci Wu, and
Martin D Wong. Ui-route: An ultra-fast incremental
maze routing algorithm. In 2014 ACM/IEEE International
Workshop on System Level Interconnect Prediction (SLIP),
pages 1–8. IEEE, 2014.

[Kramer, 1984] Mark R Kramer. The complexity of
wirerouting and finding minimum area layouts for arbi-
trary vlsi circuits. Advances in computing research, 2:129–
146, 1984.

[Liao et al., 2020] Haiguang Liao, Wentai Zhang, Xuliang
Dong, Barnabas Poczos, Kenji Shimada, and Levent Bu-
rak Kara. A deep reinforcement learning approach for
global routing. Journal of Mechanical Design, 142(6),
2020.

[Malavasi and Sangiovanni-Vincentelli, 1993] Enrico
Malavasi and Alberto Sangiovanni-Vincentelli. Area
routing for analog layout. IEEE transactions on
computer-aided design of integrated circuits and systems,
12(8):1186–1197, 1993.

[Mandal et al., 2020] Tarak Nath Mandal, Ankita Dutta
Banik, Kaushik Dey, Ranjan Mehera, and Rajat Kumar
Pal. Algorithms for minimizing bottleneck crosstalk in
two-layer channel routing. In Computational Advance-
ment in Communication Circuits and Systems, pages 313–
330. Springer, 2020.

[Mo et al., 2001] Fan Mo, Abdallah Tabbara, and Robert K
Brayton. A force-directed maze router. In IEEE/ACM
International Conference on Computer Aided Design. IC-
CAD 2001. IEEE/ACM Digest of Technical Papers (Cat.
No. 01CH37281), pages 404–407. IEEE, 2001.

[Rechenberg, 1994] Ingo Rechenberg. Evolutionsstrategie:
Optimierung technischer systeme nach prinzipien der bi-
ologischen evolution. frommann-holzbog, stuttgart, 1973.
Step-Size Adaptation Based on Non-Local Use of Selec-
tion Information. In Parallel Problem Solving from Nature
(PPSN3), 1994.

[Salimans et al., 2017] Tim Salimans, Jonathan Ho,
Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution
strategies as a scalable alternative to reinforcement
learning. arXiv preprint arXiv:1703.03864, 2017.

[Schaller, 1997] Robert R Schaller. Moore’s law: past,
present and future. IEEE spectrum, 34(6):52–59, 1997.

[Shi and Davoodi, 2017] Daohang Shi and Azadeh Davoodi.
Trapl: Track planning of local congestion for global rout-
ing. In Proceedings of the 54th Annual Design Automation
Conference 2017, pages 1–6, 2017.

[Shi et al., 2016] Daohang Shi, Azadeh Davoodi, and Jeffrey
Linderoth. A procedure for improving the distribution of
congestion in global routing. In 2016 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages
249–252. IEEE, 2016.

[Tamar et al., 2016] Aviv Tamar, Yi Wu, Garrett Thomas,
Sergey Levine, and Pieter Abbeel. Value iteration net-
works. In Advances in Neural Information Processing Sys-
tems, pages 2154–2162, 2016.

[Williams, 1992] Ronald J Williams. Simple statistical
gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

[Zhang, 2016] Ran Zhang. A Study of Routing Algorithms
for PCB Design. PhD thesis, 2016.

	Introduction
	Related Work
	Heuristic Algorithms for Circuit Rouging

	Background and Notations
	Circuit Routing
	Evolution Strategies

	Methodology
	Sequential A* with Ranking Learning
	Circuit Routing with Cost Maps
	Ranking Cost Algorithm

	Experiments
	Methods Evaluation
	Ablation Study
	Impact of Ranking Orders
	Impact of Cost Maps
	Scalability of Ranking Cost Algorithm

	Discussion

