
Abstract 

In order to improve the efficiency of plate cutting 
process and the utilization of plate in industry, the 
cutting problem of rectangular plate with defects is 
studied, and an efficient recursive algorithm is pro-
posed. The algorithm adopts the idea of dynamic 
programming. The key is to define a new discretiza-
tion set structure and generalize the conclusion of 
Herz theorem, so as to ensure the optimality of the 
algorithm in this paper. It also defines a new lower 
bound of pure plate by using the characteristic of 
transmitting the result from the sub problem to its 
parent problem, which can significantly reduce the 
amount of calculation of homogeneous cutting. Ex-
periments show that the computational efficiency of 
this algorithm is dozens of times faster than the cur-
rent algorithm. 

1 Introduction 

Rectangular layout problem is a typical NP-hard problem 
[Kellerer et al., 2004; Na et al., 2014], which has been widely 
studied by industry scholars [Iori et al., 2007; Wu et al., 2019]. 
For example, in the manufacturing industry, large plates are 
usually cut into small items by cutting process to meet the 
needs of users, and these raw materials such as wood, leather 
and steel often contain defective areas. In some assembly 
lines, the location and size of defects are monitored by cam-
eras in real time, and the cutting decision must be made in a 
very short time (a few seconds) [Aksu and Durak, 2016]. 
Therefore, in the face of large-scale cutting requirements, it 
is of great significance and practical value to design efficient 
cutting methods. 

Most of the previous studies on cutting problems only con-
sider a single defect. Carnieri et al. [1993] proposed a dy-
namic programming heuristic algorithm based on Gilmore 
and Gomory [1996], which analyzes the influence of defect 
location on the optimal cutting pattern. Neidlein et al. [2008] 
used the discretized cutting set proposed by Herz [1972], 
combined with depth first and mountain climbing strategy, 
which improved the efficiency of the algorithm, but reduced 
the quality of the solution to a certain extent. 

Nowadays, more and more literatures present more effec-
tive algorithms to solve this problem. Afsharian et al. [2014] 

gave a heuristic dynamic programming method DPD. In 
their research, multiple defects are allowed on the original 
plate, and the quantity of items is not limited. They added 
the size of defects to the composition of cutting discrete 
set, and symmetrically cut the defective plate in horizontal 
and vertical directions respectively. The experimental re-
sults show that this method obtains high quality of the so-
lution. Wu et al. [2019] designed two priority heuristic al-
gorithms by adopting two strategies: defect collision pro-
cessing and early defect removal. Martin et al. [2020] pro-
posed an integer linear programming model based on rec-
tangular block discretization, and designed Benders De-
composition algorithm B&BC and an efficient constrained 
programming algorithm B&C-CP, which provide a new 
solution idea for different types of examples. Yin et al. 
[2019] additionally considered the cutting position of one 
unit from the four sides of the defect, combined with the 
cutting discrete set of cargo size combination, proposed an 
improved heuristic dynamic programming method IHDP, 
and obtained the optimal solution of most typical instances. 
Gonçalves and Wäscher [2020] designed a hybrid algorithm 
to solve the problem of non-guillotine pattern. The algo-
rithm is based on a new minimum mean square error 
model and a partial random key genetic algorithm 
(BRKGA). The solution is better than that of guillotine 
mode. 

In this paper, the rectangular cutting problem with defects 
in guillotine pattern is studied, a new subproblem partition 
strategy is proposed, and a dynamic programming algorithm 
with efficient discretization set is obtained EDDP (Efficient 
Discretization set Dynamic Programming).  According to the 
correlation between defects and normalized cutting mode, 
EDDP intercepts the non-negative combination number of 
width and height dimensions of the items respectively with 
the left (lower) and right (upper) of the plate as the baselines, 
and constructs a new discretization set. With this discretiza-
tion set, EDDP can obtain the normalized cutting pattern of 
the defective plate and ensure the optimality of the solution 
obtained by the algorithm (Theorem 1). This paper also de-
fines a new lower bound of the subproblem without defects, 
takes only a small part of this kind of subproblem whose 
lower bound is greater than 0, and constructs a small two-
dimensional table to store them, which improves the effi-
ciency of the algorithm. 
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2 Problem description 

The two-dimensional rectangular cutting problem with de-
fects discussed in this paper is described as follows [Morabito 
and Pureza, 2010]： 

Given a rectangular plate, the width of its size is W0, the 
height is H0, and the original plate contains several defective 
blocks. The given rectangular items include m types. The 
width and height of these items are wi, hi(i = 1, 2, … , m), and 
their values are expressed by their area as vi = wi × hi. The 
problem is to cut items that do not have defects from the orig-
inal plate, and to maximize the sum of the areas of these items.  

Each solution of the problem corresponds to a type of cut-
ting pattern of the original plate and each pattern is required 
to meet the following constraints: each cutting is a guillotine, 
the direction of items is fixed, both the quantity of items and 
the cutting stage are unlimited. 

Let  𝜂 = (𝜂1, 𝜂2, … , 𝜂𝑚) represent the items information in 
a cutting pattern, 𝜂𝑖 represents the number of the ith item ob-
tained in this pattern, then the objective function of the prob-
lem can be described as follows. 
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A Cartesian coordinate system is established according to 
the above description. The width direction of the plate is X-
axis and the height direction of the plate is Y-axis. The orig-
inal plate is represented by R = (0, 0, W0, H0), as shown in 
Figure 1. Since each cut is a guillotine, this paper uses one or 
more rectangles to represent irregular defects. The defects on 
the original plate can be expressed as n quads 𝑑𝑗 =
(𝑥𝑗

𝑑 , 𝑦𝑗
𝑑 , 𝑤𝑗

𝑑 , ℎ𝑗
𝑑) 。 

 
Figure 1:  Problem diagram 

In summary, the problem discussed in this paper is a two-
dimensional cutting problem of single rectangular plate with 
defects in guillotine pattern, with unlimited quantity of items 
and number of cutting stages. 

3 Algorithm description  

This section will describe EDDP algorithm from three as-
pects: subproblem partition strategy (discretization set), sub-
problem lower bound and its recursive process. 

3.1 Basic concepts 

Here, we first introduce some basic concepts. 

Intermediate plate After each cutting, one plate becomes 
two small plates. In the process of solving the problem, many 
small rectangular plates will be cut and generated. These 
plates are called intermediate plates. For an intermediate plate 
with width w and height h, the coordinates of the lower left 
corner are (x0, y0). If it has defects, it is represented by quad-
ruple R = (x0, y0, w, h), otherwise it is represented by R = (w, 
h). 

C-plate and D-plate The intermediate plate without de-
fects is called C (clean)-plate, and the corresponding sub-
problem is C-subproblem; The intermediate plate with de-
fects is called D (defective)-plate, and the corresponding sub-
problem is D-subproblem. 

An intermediate plate R=(x0, y0, w, h) contains defect 𝑑𝑗 =
(𝑥𝑗

𝑑 , 𝑦𝑗
𝑑 , 𝑤𝑗

𝑑 , ℎ𝑗
𝑑) or not which can be calculated by formula 
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Here, λj = 1 means dj in the subplate R, i.e. R is a D-plate; 
λj = 0 means that dj does not intersect with R. The subplate R 
not intersecting with any defect is the C-plate. 

3.2 Cut point discretization set  

In order to solve the two-dimensional rectangular cutting 
problem without defects, researchers have proved that any 
feasible cutting pattern can be transformed into an equivalent 
normalized pattern, in which the items are cut from the lower 
left corner of the plate [Herz, 1972; Christofides and Whit-
lock, 1977]. Considering the nonnegative integer combina-
tion of the width and height of the items, they constructed the 
vertical and horizontal classical discretization sets to obtain 
the normalized pattern, as shown below. 
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The cutting point of the intermediate plate R = (x0, y0, w, h) 
is obtained from its discretization set elements, and the dis-
tance from a cutting point to the left (lower) edge of R is equal 
to the corresponding element value. 

Considering that the items may be at the top right of some 
defects and the normalized pattern requires the items to be 
close to the bottom left of the plate, this paper defines a new 
discretization set, as shown below. 
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Equation (5) indicates that a step baseline is established on 
the right side of each defect of the intermediate plate in the 
horizontal direction, and the vertical discretization set 
𝑇𝑥
𝑑𝑟(𝑤)  is constructed. Equation (6) represents the corre-

sponding horizontal discretization set 𝑇𝑦
𝑑𝑟(ℎ). For any inter-

mediate plate R = (x0, y0, w, h), the new discretization set in 
this paper is obtained by combining equations (3-4) and equa-
tions (5-6), as shown in the equations (7-8): 

 ( ) ( ) ( )r dr
x x xT w T w T w=  (7) 
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Compared with the complete discretization set, the dis-
cretization sets 𝑇𝑥(𝑤) and 𝑇𝑦(ℎ)will not reduce the quality of 
the solution obtained by our recursive algorithm in this paper, 
and guarantee it obtain the optimal solution of the problem. 
This conclusion is described in Theorem 1 as follows. 

Theorem 1: Any cutting pattern of defective plate can be 
equivalent converted to another cutting pattern. The con-
verted pattern can make the cutting points fall into the dis-
cretization sets Tx(w) and Ty(h), and the objective function 
value obtained by the former does not decrease. 

Proof. Call an arbitrary cutting pattern of defective plate as a 

general cutting pattern. In this pattern, the left (lower) side of 

the cutting line(point) on the left (lower) side of the items 

may not fit the plate, defect or other items, so the cutting 

line(point) and the items on the right (upper) side can move 

to the left (lower). After this translation, the left (lower) side 

of the cutting line where the left (lower) side of the items is 

located must fit the plate, defects or other items. The items 

should be at the lower left of the plate as far as possible, and 

the waste should be concentrated at the upper right, as shown 

in Figure 2. 

After translation, the positions of the cutting lines on the 
left and right sides of all items must exist in the discretization 
set 𝑇𝑥(𝑤), three cases are discussed here. For any vertical 
cutting line, First, if the left side of the cutting line fits the 
plate, its position is 0, and the right cutting line of the right 
items is in 𝑇𝑥

𝑟(𝑤). Then, if the left side of the cutting line is 
defective, the position of the cutting line is in 𝑇𝑥

𝑑𝑟(𝑤). Finally, 
if the left side of the cutting line fits the items, the cutting line 
belongs to the same discretization set as the left cutting line 
of the left items. 

The proof of the horizontal cutting line in the vertical di-
rection is the same, which will not be repeated here. Theorem 
is proved.                                      □ 

 
Figure 2:  Normalized pattern of the defective plate 

Theorem 1 extends the conclusion of Herz [1972] to the 
problem with defects. This generalization is an important 
breakthrough for us to solve the cutting problem with defects. 
The most important thing is that it provides a theoretical guar-
antee for the algorithm in this paper to obtain the optimal so-
lution. This paper also refers to the above cutting pattern after 
translation as the normalized pattern of the defective plate. 

3.3 Lower bound of C-subproblem  

At present, a lower bound based on homogeneous cutting is 
widely used in recursive algorithms for solving problems 
without defects. The lower bound can not only deal with the 
problem of solution decline caused by symmetry cutting 
[Beasley, 1985], but also be used in various heuristic strate-
gies. This lower bound is defined as follows. 
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According to the analysis, while solving a large-scale C-
problem, there are many repeated calculations between g (w, 
h) and recursion. This is because a C-problem is divided into 
multiple C-subproblems with the same solution in recursion, 
and the sum of the solutions of these C-subproblems is equal 
to g(w, h). In this paper, a new lower bound C(w, h) is defined 
to greatly reduce the amount of repeated calculation and im-
prove the efficiency of the algorithm.   
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For a C-plate, R = (w, h), if an item i meets R = (w, h) and 
ℎ𝑖 ≤ ℎ < 2ℎ𝑖, then the value of C(w, h) is the maximum area 
of the item meeting these conditions. Otherwise, none of the 
items meets these conditions, C(w, h) = 0. 

Let wmax=max(wi|1 ≤ i ≤ m)，hmax=max(hi|1 ≤ i ≤ m)，ac-
cording to equation (10), the width and the height of C-plate 
with a new lower bound greater than 0 is less than 2wmax and 
2hmax, respectively. Therefore, a 2wmax × 2hmax matrix (two-
dimensional table), called a K-table, can be constructed to 
store the value of the new lower bound. It is not difficult to 
know that m types of items need to be traversed when calcu-
lating the value of each element of the K-table. Therefore, the 
time complexity of calculating K-table is 𝑂(𝑚 ⋅ 𝑤𝑚𝑎𝑥 ⋅
ℎ𝑚𝑎𝑥). 

Not only the time complexity of calculating the K-table is 
very small, but also the K-table can be calculated before the 
beginning of recursion, so as to facilitate the subsequent cal-
culation of the lower bound by looking up the table. However, 
the calculation range of the lower bound g(w, h) includes all 
C-subproblems, and its calculation amount is much larger. 
This will lead to great advantages in calculation efficiency 
when the size of items differs greatly from that of the original 
plate. 

3.4 The new dynamic programming 

In the recursive process, all subproblems are divided by the 
new discretization set elements, and the solution of the cur-
rent problem is the maximum of its new lower bound C(w, h) 



and the sum of its subproblems’ solutions. The new recursive 
function for solving the C-subproblem is defined as follows. 
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In the process of solving the C-subproblem, the value of 
the cutting point stops at half of the size of the intermediate 
plate, which is the result of avoiding the symmetrical cutting 
pattern of the C-plate [Herz, 1972]. In addition, each time the 
subproblem is divided, the size of the right (upper) sub-plate 
can be further reduced, as shown in equation (12). 
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p(w) represents the position of the cutting point closest to 
the right of the intermediate plate while q(h) represents the 
position of the cutting point closest to the upper edge of the 
intermediate plate. This method limits the size of the plate to 
a discrete set, so that some different subproblems can be 
transformed into repeated subproblems. It does not reduce the 
quality of the solution obtained by the algorithm, and im-
proves the efficiency of calculation [Beasley, 1985]. 

Therefore, the recursive function for solving the D-sub-
problem is defined as follows. 
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 (13) 

Since the cutting point separating the defect from the items 
may appear at the edge of the intermediate plate, the selection 
range of discrete sets in equation (13) is [1, w-1] and [1, h-1]. 
It is clear that 𝐹(𝑥0, 𝑦0, 𝑤, ℎ) is also used to solve the original 
problem R=(0, 0, W0, H0). 

4 Experiment 

The experiment is coded in C++ and runs and evaluates 
EDDP in the environment of i5-4200H CPU 2.80GHZ.  

Class m ρ 
DPC DPD EDDP 

OFV CT(s) OFV CT(s) OFV CT(s) 
1 5 6 59589.37 5615.48 58707.6 123.68 59589.37 0.01125 
2 10 6 65763.73 5542.994 64857.25 225.89 65763.73 0.1575 
3 15 6 69424.47 7015.74 68832.68 265.06 69424.47 0.47125 
4 20 6 72494.38 7403.52 71708.11 501.14 72494.38 2.56475 
5 25 6 75017.87 7312.41 74345.13 505.45 75017.87 4.195 
6 5 8 57585.43 5255.65 56809.91 96.13 57585.43 0.01175 
7 10 8 69057.08 6790.57 68244.58 311.65 69057.08 1.986 
8 15 8 73679.27 8888.12 73047.51 529.24 73679.27 3.71375 
9 20 8 75528.63 8649.94 74767.43 819.22 75528.63 9.43675 

10 25 8 77178.77 8459.96 76713.05 1422.33 77178.77 28.723 
11 5 10 59970.58 5933.43 59584.45 150.97 59970.58 0.09725 
12 10 10 73352.73 7444.78 72717.7 398.99 73352.73 0.9645 
13 15 10 74058.07 8096.66 73389.63 577.09 74058.07 4.531 
14 20 10 78722.25 9313.24 78297.61 1545.06 78722.25 44.00575 
15 25 10 78921.28 9852.68 78211.6 1558.21 78921.28 52.9255 
16 5 6 55345.02 7974.38 54692.4 122.87 55345.02 0.00625 
17 10 6 68157.33 9686.68 67097.4 297.51 68157.33 0.23775 
18 15 6 72302.37 12955.8 71595.45 417.33 72302.37 0.94425 
19 20 6 71964.07 12039.17 71311.08 384.57 71964.07 1.732 
20 25 6 75596.92 12915.62 75154.26 844.27 75596.92 7.8115 
21 5 8 58758.78 7249.74 57095.48 120.32 58758.78 0.01175 
22 10 8 68186.45 11271.39 67306.91 330.42 68186.45 0.82675 
23 15 8 73113.17 13020.78 72500.68 653.24 73113.17 4.50075 
24 20 8 77282.15 13083.66 76691.43 957.87 77282.15 12.03525 
25 25 8 78269.4 13094.77 77629.33 1268.14 78269.4 33.48175 
26 5 10 64746.97 9467.29 63169.15 154.15 64746.97 0.07625 
27 10 10 67936.45 12128.87 67114.36 378.62 67936.45 0.92 
28 15 10 76180.58 13044.18 75415.03 849.88 76180.58 7.82975 
29 20 10 78203.08 12457.37 77600.43 1098.54 78203.08 32.81775 
30 25 10 78254.72 12714.31 77686.03 1509.38 78254.72 65.31825 

Average 70821.379 9489.306 70076.455 613.907 70821.379 10.745 
Notes: bold is the best solution; OFV means Objective Function Values; CT means Cost Time。 

Table 1: Comparison of the results of three algorithms on 1800 large-scale instances 



The instances were taken from the largest set of instances 
generated by Afsharian [Afsharian et al., 2014], and can be 
found at www.dep.ufscar.br/munari/cuttingpacking. The di-
mensions of the original plates in the instances are all (300, 
300) or (450, 200), and their total number contains 1800 in-
stances based on item information, defect information, and 
other factors. 

Based on the analysis of experimental results of several 
current state-of-the-art algorithms in the literature [Afsharian 
et al., 2014; Martin et al., 2020], two typical algorithms are 
selected for comparison with the EDDP in this paper. One is 
DPD, which is the algorithm with the best overall quality, and 
the other is DPC, which is a fully dynamic programming al-
gorithm that obtains the optimal solution exactly. 

The computational results of the above three algorithms 
are shown in Table 1 above. Where DPD fails to obtain the 
optimal solution for a set of instances, EDDP obtains the op-
timal solution for all instances. In terms of computational 
time efficiency, the average computation time of DPD is 613 
seconds, while the average computation time of EDDP is 10 
seconds, which is more than 60 times faster than that of DPD. 
Overall, the significant advantage of EDDP is demonstrated 
both in terms of the quality of the computational results and 
in terms of the computational speed. 

5 Discussion and Conclusion 

This paper discusses the two-dimensional cutting problem 
with defects under guillotine constraints. First, an efficient 
discrete set is proposed and a normalized pattern of the de-
fected plate is obtained, which ensures the optimality of the 
algorithm and is an important breakthrough in solving the 
cutting problem with defects. Second, a simpler method for 
lower bounding the subproblem is designed and the K-table 
for storing the lower bound is constructed to further improve 
the operation speed of the algorithm. The experimental re-
sults show that EDDP obtains the optimal solution while the 
computational speed is much faster than similar algorithms, 
providing a quality solution for this type of problem.  
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