
Conflict- and Fairness-Directed Heuristic Search Scheduling for
NASA’s Oversubscribed Deep Space Network

Mark D. Johnston
Jet Propulsion Laboratory – California Institute of Technology

mark.d.johnston @ jpl.nasa.gov

Abstract
This paper describes a comparison of search meth-
ods applied to the same problem of scheduling ac-
tivities for NASA’s Deep Space Network (DSN).
The DSN consists of large (34- and 70-meter) ra-
dio antennas at three sites around the world, and
provides communications and navigation support
for dozens of space missions. The DSN is over-
subscribed – more time is requested than can be
accommodated – and it is an ongoing challenge
to schedule the available resources while also bal-
ancing the satisfaction of requests from the dis-
parate set of users. As part of a study of state-
of-the-art solution techniques for oversubscribed
scheduling, a standard set of problems was de-
fined, and solutions were attempted with several
classes of algorithms developed by different teams.
These included variants of Quantum Annealing
(QA), Mixed-Integer Linear Programming (MILP),
and Constraint Satisfaction Problem (CSP) based
heuristic search (CSP-HS). The results of this com-
parison, first reported in this work, show that the
heuristic search method CSP-HS significantly out-
performs the other methods in the study in terms
of solution quality and runtime performance, when
objectives are to maximize the “fairness” of the
resulting schedule (e.g. minimize starving some
users at the expense of others) while simultane-
ously clearing all constraint violations and fitting as
much as possible into the schedule. CSP-HS shows
progressively better performance on more oversub-
scribed problems. The set of benchmark problems
is made openly available for other groups to try.

1 Introduction
NASA’s Deep Space Network (DSN) 1 consists of a set of
large (34-meter and 70-meter) antennas located at three sites
that are roughly equally spaced around the world: Gold-
stone, California USA; Madrid, Spain; and Canberra, Aus-
tralia (Figure 1; see e.g. [Imbriale, 2003]). The DSN provides

the sole communications lifeline for dozens of interplanetary
spacecraft. It also provides navigation services and scientific
observations in the fields of radio astronomy and planetary
radar. It is the largest and most sensitive telecommunications
network in the world. At the present time, the DSN supports
about 40 users with 14 antennas, with the number of users
roughly expected to double in the next 5 years. The DSN
is operated for NASA by the Jet Propulsion Laboratory in
Pasadena, California.

An an international asset in high demand, the scheduling
of the DSN is heavily subscribed. The scheduling process
for the DSN [Johnston et al., 2014] is conducted on a rolling
weekly basis, months ahead of execution. The first step in
that process is to integrate and deconflict the many requests
for services that users submit ahead of a common deadline.
That process is one of the most labor-intensive and time-
consuming aspects of DSN scheduling, and is the focus of the
study reported here. It generally takes days of work to man-
ually deconflict the schedule to a level where teams of sched-
ulers spend another week or so negotiating final changes to
the point where a mutually-concurred baseline schedule can
be published. Missions generally require the schedule to be
well-defined and stable weeks to months ahead of time to en-
able their own processes for planning and onboard sequenc-
ing of activities. These need to be consistent with opportu-

Figure 1: The Deep Space Network station locations (upper left),
and approximate fields of view showing how a spacecraft is nearly
always visible from at least one station (lower left); on the right is
one of the DSN 34-meter antennas at Madrid.

Copyright ©2022, California Institute of Technology. Government
sponsorship acknowledged.

nities to download data and to receive commands from the
ground, often with long light travel time delays.

As part of an assessment of technologies that could poten-
tially be used to improve this part of the process, a study was
initiated in 2018 to assess new approaches to the solution of
the same oversubscribed DSN scheduling problem. These in-
cluded:

• Quantum Annealing (QA) inspired quadratic uncon-
strained binary optimization (QUBO) formulation [Guil-
laume et al., 2022], solved with the D-Wave Leap Hy-
brid Solver Service (HSS)

• ∆-MILP [Sabol et al., 2021; Claudet et al., 2022], a
Mixed-Integer Linear Programming variant

• CSP-HS, a Constraint Satisfaction Problem (CSP) based
heuristic search technique, CSP-HS [Shouraboura et al.,
2016; Johnston, 2019; Johnston, 2020] that was previ-
ously under development for DSN scheduling for an in-
vestigation of priorities and user preferences, and was
adapted to ingest the common problem format, and to
implement the same scheduling objectives as used in the
other methods.

In addition, a Reinforcement Learning (RL) [Goh et al.,
2021; Goh et al., 2022] approach was also explored, but un-
fortunately did not yield final results during the time period
of the study.

In the following we first describe the scheduling problem in
more detail, including the relevant constraints and objectives
that play a key role. We then describe the CSP-HS heuristic
search algorithm. This is followed by a detailed comparison
of the results from three of the methods that have solved at
least a subset of the problems. The complete source of the
problems from 2018 are publicly available [Goh et al., 2022].
We conclude with a summary of current status and ongoing
and future work.

2 DSN Scheduling
Scheduling a week of DSN activity requires the integration
and deconfliction of requests from all DSN users. Requests
are formulated in terms of requested tracking time, along with
constraints such as temporal limits, specific sets of antennas
that can support the requested services, min and max sepa-
ration limits, etc.: for a full list see [Johnston et al., 2014].
In addition to request-specific factors, scheduling depends on
the line-of-sight visibility of the spacecraft by the antenna,
and on whether the antenna is available (i.e. not down for
maintenance or other upgrades). Other constraints determine
whether missions that are simultaneously in view can actually
be scheduled in parallel. While it is necessary to consider all
of these factors in constructing and checking an operational
schedule, they overly complicate an algorithm test scenario.
As a result, a characteristic but somewhat simplified problem
set was constructed based on requirements submitted by users
as part of their long-range loading forecast.

2.1 Scheduling Problem Characteristics
The major features of the requests in this set are:

• a valid time range interval during which any generated
tracks must be contained

• a tracking time duration

• a set of antennas that can accommodate the necessary
services

• for longer tracks, a range of valid durations, and the op-
tion to split a track into segments with a specified mini-
mum duration

• service-dependent setup time and teardown time that has
to be included on all tracks (and on any split segments)

• for certain tracks, the option to schedule on either a sin-
gle 70-meter antenna, or on a simultaneous array of two
(or more) 34-meter antennas

• for navigation purposes, some tracks must be scheduled
on two different antennas at once, and at different com-
plexes

In addition to request specifics, there are general con-
straints based on the spacecraft involved:

• tracking time must be scheduled when spacecraft are in
view of a particular antenna, and when the antenna is
available (not in maintenance or other downtime); setup
and teardown time can be scheduled out of view

• scheduled activities on one antenna (including setup
and teardown) must not overlap with tracking the same
spacecraft on another antenna (except for arrays or spe-
cial navigation tracking)

• different spacecraft cannot generally be simultaneously
scheduled in overlap on the same antenna – such a con-
figuration is called a facility conflict

A typical week includes hundreds of requests covering a
7-day interval that must be fit into the week without violating
any of the constraints listed above. Such a schedule is called
feasible. A total of 6 sample problems were defined for the
investigations reported here, one in 2016 (week 44) and 5 in
2018 (every 10th week from 10 to 50). For a formal repre-
sentation of the problem, refer to [Claudet et al., 2022], [Goh
et al., 2022], or [Guillaume et al., 2022]. The 2018 weeks
are publicly available as the SatNet benchmark dataset [Goh
et al., 2022].

2.2 Oversubscription
The DSN is routinely oversubscribed by a variable amount
[Johnston and Lad, 2018], depending on the mix of missions
and their planned activities. For example, when a mission
reaches its destination science target, such as a planet or as-
teroid, it can go from minimal DSN usage to nearly contin-
uous coverage for some period, sometimes months or years.
Other missions act as orbiting relay stations for ground-based
rovers. When oversubscription reaches a level of as little as
10% it is equivalent to having one additional antenna’s worth
of demand to remove before a feasible schedule can be de-
veloped and published. Typical oversubscription levels range
up to about 40%, with even higher spikes. Note that oversub-
scription is not just a function of total time in the week, but

also of the geometry of when missions are visible: for space-
craft that are in the same part of the sky, their total demand
can still overwhelm available resources during certain times
of the day when they are all visible.

2.3 Scheduling Objectives
Natural objectives for the DSN scheduling problem might
seem to be to maximize the total number of requests or to-
tal time scheduled, or to maximize antenna usage. However,
there are severe drawbacks to using these as objectives for this
problem: several dozen individual missions or science users
submit their requests, which are widely varying in both total
time and individual request duration, and thus with a range of
difficulty in fitting into the schedule. A solution that fills the
schedule by satisfying requests from one mission at the ex-
pense of another would be rejected by DSN users. In extreme
cases, missions could be entirely dropped from the schedule,
with others having incrementally more of their requests satis-
fied – an unacceptable scenario.

This leads to the definition of objectives that are based on
how well scheduling requests are met on a per-mission ba-
sis. Two cost (minimization) objectives are therefore defined,
based on a measure of how unsatisfied each mission could
be with the extent to which their requests are met in the final
schedule (with an assumption of uniform preferences among
each mission’s requests, e.g. [Johnston, 2021]):

The overall RMS unsatisfied time fraction is defined as:

Urms =

√√√√ 1

N

∑
i=1...N

(
TRi − TSi

TRi

)2

(1)

where i ranges over missions 1 . . . N , and TRi and TSi are
the tracking time requested and scheduled, respectively, for
mission i.

While this will reflect an overall measure of unsatisfied re-
quests, it does not distinguish the situation where one mission
is “pushed out” of the schedule altogether (TSi = 0), an un-
acceptable situation. For this purpose, a better metric is:

Umax = max
i∈{1...N}

(
TRi − TSi

TRi

)
(2)

which indicates the worst case (max) unsatisfaction of any
individual mission. Here, a value of 1.0 means no requested
time for that mission was included in the schedule. We can
compare two schedules based on their values of Urms and
Umax. Intuitively, Urms can be thought of as “spread the
pain”, and Umax as “no user left out”.

3 CSP-HS: CSP-based Heuristic Scheduling
for the DSN

The heuristic search algorithm CSP-HS described in this
work is based on a stochastic multi-start hill-climbing ap-
proach, implemented in three computational phases (see Fig-
ure 2):

1. Initial assignment: perform a greedy initial assignment
of all requests to some valid time and resource for that
request, avoiding but allowing conflicts

Figure 2: Illustration of the 3 phases of the CSP-HS algorithm,
showing CSP runtime values as a function of step count. In the
first phase, all variables are assigned, and when no conflict-free val-
ues are available, the conflict count grows. In the second phase, the
min-conflicts heuristic is used to reduce conflicts by re-assigning
variables with conflicted values. In the third and final phase, vari-
ables are unassigned until there are no conflicts remaining.

Figure 3: A comparison of four candidate heuristic pairs for phases
1 and 3, as assessed by the objective Umax. For this metric, the max
unsat (MUS+MUS) combination performs best by far.

2. Min-conflict hill climbing: use a min-conflicts heuristic
to repair the schedule and reduce conflicts, leaving all
requests assigned [Minton et al., 1992]

3. Deconflict and repair: remove conflicting activities and
(selectively) add back others that may now have feasible
places

In this approach, each phase can make use of different heuris-
tics, described below, and we can assess the combinations that
provide the most promising results and then evaluate them on
larger data sets.

For an example run, Figure 2 shows the evolution of some
quantities of interest during the three computational phases.
These include:

• conf: the number of requests in conflict, i.e. violating
any hard problem constraint

• RMS unsat: the changing value of RMS user unsatis-
faction Urms (Eqn. 1)

• max user unsat: the changing value of the max user
unsatisfaction Umax (Eqn. 2)

2016-2018 Problems

2016
wk44

2018
wk10

2018
wk20

2018
wk30

2018
wk40

2018
wk50

Metric ΔMILP CSP-
HS

QUBO
+Leap

ΔMILP CSP-
HS

ΔMILP CSP-
HS

ΔMILP CSP-
HS

ΔMILP CSP-
HS

QUBO
+Leap

ΔMILP CSP-
HS

Hours satisfied 901 of
1418

950 976 822 of
1192

860 1059
of

1406

1034 983 of
1464

998 949 of
1737

984 1059 816 of
1292

838

Overall satisfied time fraction (%) 63.5 67.0 68.8 69.0 72.2 75.3 73.6 67.1 68.1 54.6 56.6 61.0 63.1 64.9

satisfied requests 208 of
284

231 245 203 of
257

224 249 of
294

261 231 of
293

248 223 of
333

250 269 197 of
275

224

average satisfied request fraction (%) 73.2 81.3 86.3 79.0 87.2 84.7 88.8 78.8 84.6 67.0 75.1 80.9 71.6 81.5

Average satisfied fraction (%) 69.9 76.8 82.8 81.5 84.5 88.8 84.9 81.4 79.0 70.8 72.7 80.3 73.8 77.8

RMS Unsat (%) 35.4 30.2 31.5 26.5 23.1 21.5 21.8 29.4 27.7 40.5 35.6 33.5 34.9 30.1

Max Unsat User (%) 54.2 49.2 89.2 47.9 44.2 64.1 50.3 64.3 52.9 100 60.1 94.6 60.0 54.4

Runtime (hours) ~24 ~1* ~2.5

Figure 4: Summary of tabulated results comparing different approaches. Better values of the schedule metrics are indicated in bold font, and
for fairness metrics Umax and Urms, shaded in green as well. Runtime for CSP-HS is based on 100 (serial) runs, as described in the text.

• unasgn: number of unassigned variables, i.e. the num-
ber of requests without track assignments

• track%: percentage of tracks scheduled
• unsched time%: percentage of time requested that is

not scheduled
• activity%: percentage of activities scheduled
The underlying representation of the scheduling problem

is based on discretizing the feasible times throughout the
week of interest, initially using a time quantum of 15 min-
utes (see discussion below). Variables correspond to requests,
while the decision value xj for each request j encapsulates si-
multaneously a choice for start time, duration, and antenna:
(tj , dj , Aj). For requests with splittable tracks, this is ex-
tended to include when to split, and then each split segment
start time, duration, and antenna. For multiple antenna re-
quests, it also includes the set of antennas (the start time and
duration must be the same). Any choices that can be excluded
(not in view, antenna not available, etc.) are omitted from the
model.

During all three phases it is necessary to keep a tally of how
many variables and their values are placed in conflict due to
other variable assignments. For example, scheduling a sim-
ple request at a specific time would place any other overlap-
ping requests on the same antenna in conflict, and so would
increment the conflict count on all those value choices. Con-
flicts are calculated on the fly and then cached, so it is fast to
undo/redo any trial assignment.

Both the initial assignment (1) and the deconfliction phase
(3) are driven by heuristics that are applied to the then cur-
rent state of the model. Several heuristics were explored to
determine which performed best in the context of objectives
related to fairness, focusing on Umax (see Figure 3). Some of
the variable (request) selection heuristics assessed are listed
below; value selection is random from the set of min-conflict
values:

• MUS: most unsatisfied user – the request that can con-
tribute most to improving Umax

• RMSUS: the request that can contribute most to improv-
ing Urms

• MCF: most constrained first – the request with the
fewest min-conflict value choices

• MAXCONF: the request with an assignment that has
largest number of conflicts

• RAND: a random request

4 Results
CSP-HS was run on each of the 6 test problems (best of
100 runs), with the results tabulated in Figure 4 and plot-
ted in Figure 5. All of the problems were also solved by
∆-MILP [Claudet et al., 2022], and two of them were solved
by QUBO+Leap [Guillaume et al., 2022]. No results were
reported by the RL investigation.

The solution metrics reported in Figure 4 are:

• Hours satisfied: total hours scheduled as compared with
total requested for the week

• Overall satisfied time fraction (%): number of hours sat-
isfied as a fraction of the total requested

• # satisfied requests: total number of requests success-
fully scheduled as compared with total for the week

• Average satisfied request fraction (%): number of re-
quests satisfied as a fraction of the total

• Average satisfied fraction (%): the average over all users
i of the satisfied request fraction, TSi/TRi

• RMS user unsatisfaction Urms (%) - Equation 1

• Max user unsatisfaction Umax (%) - Equation 2

• Runtime (hours): approximate total runtime for
2016wk44 (other problems are similar and not reported)

4.1 Solution Quality
In Table 4, better values are bolded and the best values of the
fairness metrics Urms and Umax are also highlighted in green.
One of the results evident from the table is that it is common
for methods to “pack” the schedule with smaller and easier-
to-schedule activities, with the tradeoff being that some mis-
sions have their time reduced, in order to fit in more activities
for others. This highlights the difficulty of accommodating
the fairness metrics that ensure no mission is starved. In con-
trast, CSP-HS does a much better job on Umax while still
populating the schedule to a very high level. In only two
problems did other methods do slightly better in Urms and,
in both cases, the max user unsatisfaction metric Umax was
much worse (by 14 percentage points or more).

Of the 6 test problems, 2018wk40 is the most oversub-
scribed: it has the largest number of requests and of requested
tracking hours, and the smallest fraction of requested time
scheduled. This is a consequence of the activities planned
around that time: one mission approaching Mars for landing,
and two others approaching their asteroid targets, with all of
these events requiring much higher tracking and communica-
tions coverage than at other times. For this week, both ∆-
MILP and QUBO-Leap had Umax values >95%, while CSP-
HS came in at a much lower level of 60%. At this level of
oversubscription, it is essential to balance the mission set so
that in spite of very heavy demand, no users are dropped out
of the schedule. In this particular problem, what is observed
in the solutions generated by ∆-MILP and QUBO-Leap is
that several large users are massively under requirement (5%
or less), in order to build up the scheduled time of the oth-
ers. Such schedules are completely unacceptable in real DSN
operations.

4.2 Runtime Performance and Scalability
As a multi-start stochastic algorithm with a hill-climbing
phase, CSP-HS is run for a specified number of iterations.
Empirically, phase (2) is run for 10 ×K iterations where K
is the total number of requests. Experiments with other values
have been run, and it has generally been found that improve-
ments plateau after this point. As with the number of itera-
tions, the total number of runs is also specified and has been
set to 100 for this experiment. Note that these runs are com-
pletely independent and so could be trivially parallelized, but
the timing reported here is the serial runtime as a worst case.

Typical CSP-HS runtimes (100 runs, 10×K min-conflicts
iterations, on an Intel Core i9 MacBook Pro) are close to 1
hour (serialized, 35 seconds/iteration). QUBO-Leap runs in
roughly 2.5 hours, which is split between QUBO problem
generation and running the solver. Both CSP-HS and QUBO-
Leap could benefit from parallelization. ∆-MILP runs over a
time range from 7.5 to 22.5 hours, with the most oversub-
scribed schedules taking longest. While the actual step in the
DSN scheduling process in which this algorithm would run
allows for such long runtimes, it is clearly advantageous to
run quickly to allow for iterations. As usual, there is a caveat
on comparing runtimes across the different methods: each
method ran in development/test environments appropriate to
their methodologies, and these environments do not reflect
optimizations that would eventually be expected.

Figure 5: Summary of results for the 6 test weeks, plotted vs two
key minimization objectives, Umax and Urms – better results are to
the lower left. Results are labeled by the method used (see table).
CSP-HS is in all cases better in Umax; in two problems, 2018w20
and w40, other methods perform slightly better in Urms, but only
by starving one or more users to improve the overall RMS (at the
expense of worse values of Umax.)

All method results reported in Figure 4 were run with 15-
minute time granularity. In actuality, the DSN runs on sched-
ules with 5-minute granularity, and so additional tests of CSP-
HS were run with this setting. End-to-end wall clock time per
run increased from 35 seconds (15-minute granularity) to 291
seconds (5-minute granularity), a factor of 8.3×, correspond-
ing to O(T 2) in the number of time points T . With full par-
allelization, CSP-HS solutions could be generated in about 5
minutes. No other methods reported solutions with 5-minute
granularity.

5 Conclusions and Next Steps
We have described a heuristic search framework CSP-HS for
solving heavily oversubscribed scheduling problems such as
those found in NASA’s Deep Space Network, where an im-
portant part of any solution is the satisfaction of “fairness”
metrics for the allocation of time. The CSP-HS framework
lends itself to “pluggable” heuristics, depending on the key
objectives that apply. For the DSN, solutions found for a

sample problem set are both higher quality and found more
quickly than all reporting comparison methods, including a
Quantum Annealing (QA) QUBO-based method using a hy-
brid quantum solver [Guillaume et al., 2022] and the ∆-MILP
approach based on a Mixed-Integer Linear Programming for-
mulation [Claudet et al., 2022].

Fairness often plays a major role in problems like this (e.g.
[Kash et al., 2014]), in that it is essential not to starve one
user to accommodate others. In this particular problem, fair-
ness is reflected by the allocation of time in proportion to that
requested, due to an upstream process that validates requested
levels as acceptable. Other aspects of the problem could con-
tribute – for example, there could be a threshold by mission
for minimum acceptable allocations. The approach presented
here can contribute to solution options in these kinds of cases,
in that heuristics can be incorporated directly into the CSP-
HS runtime phases.

While the sample problems discussed above capture the
driving characteristics of the initial phases of DSN schedul-
ing, there are some significant elements of the full-scale DSN
scheduling problem that are not included. Chief among these
are the following:

• time separation between tracks: for many missions with
regular tracking intervals, tracks must be separated by
some minimum and/or maximum time from adjacent
tracks

• multiple spacecraft per antenna (MSPA): for missions
that are close enough in the sky to be in the antenna
beam at the same time (e.g. the missions at Mars), DSN
supports multiple downlinks at one time (though only a
single uplink). This is an efficiency that is heavily used
in DSN operations and needs to be incorporated in the
schedule.

Another area of ongoing work is related to priorities and
preferences: requests submitted by users are not all equal
to them, and work has been proceeding on including pri-
orities (such as for critical events like maneuvers, orbit in-
sertions, planetary landings) as well as user-specified prefer-
ences. Both will affect scheduling in that a better schedule
will be one that satisfies higher priority and higher prefer-
ence requests, while respecting the fairness metrics described
above [Johnston, 2021]. Implementation of this in DSN op-
erations is underway.

Acknowledgements: This research was carried out at the
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Ad-
ministration.

References
[Claudet et al., 2022] Thomas Claudet, Ryan Alimo, Ed-

win Goh, Mark D. Johnston, Ramtin Madani, and Brian
Wilson. ∆-MILP: Deep Space Network Scheduling
via Mixed-Integer Linear Programming. IEEE Access,
10:41330–41340, 2022.

[Goh et al., 2021] Edwin Goh, Hamsa Shwetha Venkataram,
Mark Hoffman, Mark D. Johnston, and Brian D. Wilson.

Scheduling the NASA Deep Space Network with Deep
Reinforcement Learning. In Proceedings IEEE Aerospace
Conference, Big Sky, MT USA, 2021.

[Goh et al., 2022] Edwin Goh, Hamsa Shwetha Venkataram,
Bharathan Balaji, Brian D. Wilson, and Mark D. Johnston.
SatNet: A Benchmark for Satellite Scheduling Optimiza-
tion. In AAAI-22 Workshop on Machine Learning for Op-
erations Research (ML4OR), 2022.

[Guillaume et al., 2022] A. Guillaume, Edwin Goh, Mark D.
Johnston, Brian Wilson, Anita Ramanan, Frances Tibble,
and Brad Lackey. Deep Space Network scheduling using
Quantum Annealing. IEEE Transactions on Quantum En-
gineering, page submitted, 2022.

[Imbriale, 2003] William A. Imbriale. Large Antennas of the
Deep Space Network. Wiley, 2003.

[Johnston and Lad, 2018] Mark D. Johnston and Jigna Lad.
Integrated Planning and Scheduling for NASA’s Deep
Space Network – from Forecasting to Real-time. In
SpaceOps 2018, Marseilles, France, 2018.

[Johnston et al., 2014] Mark Johnston, Daniel Tran, Belinda
Arroyo, Sugi Sorensen, Peter Tay, John Carruth, Adam
Coffman, and Mike Wallace. Automated Scheduling for
NASA’s Deep Space Network. AI Magazine, 35:7–25,
February 2014.

[Johnston, 2019] Mark D. Johnston. User Preference Opti-
mization for Oversubscribed Scheduling of NASA’s Deep
Space Network. In 11th International Workshop on Plan-
ning and Scheduling for Space (IWPSS), pages 86–92, July
2019.

[Johnston, 2020] Mark D. Johnston. Scheduling NASA’s
Deep Space Network: Priorities, Preferences, and Op-
timization. In Proceedings ICAPS SPARK Workshop,
Nancy, France (virtual), October 2020.

[Johnston, 2021] Mark Johnston. User Preference Opti-
mization for Oversubscribed Scheduling of NASA’s Deep
Space Network. In SpaceOps, Capetown (Virtual), 2021.

[Kash et al., 2014] Ian Kash, Ariel Procaccia, and Nisarg
Shah. No Agent Left Behind: Dynamic Fair Division of
Multiple Resources. Journal of AI Research, 51:579–603,
2014.

[Minton et al., 1992] Steven Minton, Mark D. Johnston,
A. Philips, and P. Laird. Minimizing Conflicts: A Heuris-
tic Repair Method for Constraint Satisfaction and Schedul-
ing Problems. Artificial Intelligence Journal, 58:161–205,
1992.

[Sabol et al., 2021] Alex Sabol, Ryan Alimo, Farhad Ka-
mangar, and Ramtin Madani. Deep Space Network
Scheduling via Mixed-Integer Linear Programming. IEEE
Access, 9:39985–39994, 2021.

[Shouraboura et al., 2016] Caroline Shouraboura, Mark D.
Johnston, and Daniel Tran. Prioritization and Oversub-
scribed Scheduling for NASA’s Deep Space Network. In
ICAPS SPARK Workshop, London, 2016.

	Introduction
	DSN Scheduling
	Scheduling Problem Characteristics
	Oversubscription
	Scheduling Objectives

	CSP-HS: CSP-based Heuristic Scheduling for the DSN
	Results
	Solution Quality
	Runtime Performance and Scalability

	Conclusions and Next Steps

