
CPDs path planning algorithms combined with improved proximity wildcards
strategys

Yue ZHANG1,3 , Yong-Gang ZHANG2,3

1College of Software, Jilin University
2College of Computer Science and Technology, Jilin University

3Key Laboratory of Symbolic Computing and Knowledge Engineering of Ministry of Education, Jilin
University

1436388626@qq.com, zhangyg@jlu.edu.cn

Abstract
Path planning on gridmap is a hot issue in the
field of artificial intelligence. As an important
gridmap path planning algorithm, CPDs (Com-
pressed Path Databases) are widely used in video
games, robotics and other fields. The newly
proposed proximity wildcards strategy can sig-
nificantly compress the preprocessing memory of
CPDs algorithm and improve the search efficiency,
so it is recognized as one of the best memory com-
pression strategies in the field. The paper proposes
two improved strategies for expanding the proxim-
ity wildcards area to make use of more heuristic in-
formation, including RPW(Rectangular Proximity
Wildcards) and CPW(Coordinates Proximity Wild-
cards), and two corresponding algorithms. The
experimental results on grid-based path planning
competition(GPPC) benchmark data set show that
CPDs RPW algorithm is superior to CPDs algo-
rithm combined with the proximity wildcards strat-
egy in all indexes during the preprocessing and
search stages. Though CPDs CPW algorithm per-
forms slightly worse in CPD size, it performs best
in all algorithms in the first-move array size.

1 Introduction
Path planning is an important research problem of artificial
intelligence. It has been widely studied and has been widely
used in real scenes such as robots and computer games [Fre-
und and Hoyer, 2003; Xiao and Hao, 2011]. Among them,
the path planning problem based on gridmap environment
modeling is an active research field. Around the grid-based
path planning competition[Sturtevant et al., 2015], many ex-
cellent algorithms have emerged, which has an important
and far-reaching impact on the research of path planning
algorithms[Uras and Koenig, 2014; Uras and Koenig, 2017;
Rabin and Sturtevant, 2016; Sturtevant and Rabin, 2016; Hu
et al., 2019; Harabor and Stuckey, 2018; Cohen et al., 2018;
Salvetti et al., 2018a].

As one of the follow-up work of A* algorithm, CPDs
algorithm has attracted extensive attention since it was
proposed[Salvetti et al., 2018a]. Its main idea is to preprocess

the environment map and adopt the idea of space for time to
significantly improve the search efficiency. CPDs algorithm
is divided into two steps: offline preprocessing and online
search. In the offline preprocessing step, each data structure
called CPD provides the best first move from any cell s to any
cell t of gridmap. Then, in the online search step, iteratively
find the best first move to reach the target from the starting
node until reaching the target, so as to quickly calculate the
shortest path without any state space search. CPDs algorithm
can also be used to quickly provide any prefix of the shortest
path, which is very important to reduce the movement delay
of agents. For example, the search based A* algorithm only
knows the first best move after knowing the complete shortest
path.

The main disadvantage of CPDs algorithm is that when the
map is complex, the preprocessing memory consumption is
large. Recently, many improvements have focused on reduc-
ing the preprocessing memory, that is, improving the com-
pression efficiency of CPD, mainly including heuristic redun-
dant symbols[Chiari et al., 2019], proximity wildcards[Chiari
et al., 2019], bidirectional wildcards[Salvetti et al., 2017],
etc. This paper deals with this problem by improving the
proximity wildcards strategy. On the basis of heuristic re-
dundant symbols, proximity wildcards replaces the storage
symbols of qualified nodes in the square area centered on
any node with wildcards to reduce the preprocessing mem-
ory. This paper further reduces the preprocessing memory by
expanding the area of proximity wildcards, and proposes two
improved proximity wildcards strategies:

1. RPW (Rectangular Proximity Wildcards) strategy: ex-
pand the proximity wildcards area from a square cen-
tered on any node to a rectangle.

2. CPW (Coordinates Proximity Wildcards) strategy: take
any node as the origin, divide the CPD structure into
four quadrants, and find the largest rectangular area that
meets the conditions in each quadrant.

Based on these two strategies, we propose two path planning
algorithms: CPDs RPW and CPDs CPW.

The experimental map in this paper is from the GPPC
benchmark data set. The experimental results show
that CPDs RPW algorithm is better than CPDs PW algo-
rithm(CPDs algorithm combined with the proximity wild-
cards strategy) in CPD size and search time. CPDs CPW al-

gorithm is the best among all the comparison algorithms in
terms of the size of the first-move array. However, due to the
slightly complex query function, CPD size and search time
are slightly inferior.

2 Related Work
As one of the leading algorithms in the field of path planning
based on gridmap, CPDs algorithm has attracted extensive
attention in academic circles. In recent years, the main con-
tent of the improvement of CPDs algorithm is to improve the
compression efficiency of CPD.

The Copa algorithm proposed by botea et al. significantly
improves the compression capacity of the algorithm by com-
bining rectangular list pruning, default movement, run length
coding and sliding window compression technology[Botea
and Harabor, 2013]. The SRC(Single Row Compression) al-
gorithm proposed by Strasser et al. further improves the com-
pression performance of the algorithm by reordering the rows
and columns of the first-move array and applying run length
coding to each row[Chiari et al., 2019]. Salvetti et al. pro-
posed the concept of wildcard. The main idea is: given any
two nodes s and t, the standard CPDs algorithm encodes the
best first move from s to t, and also encodes the best first
move from t to s. the CPDs algorithm based on wildcard en-
codes only one direction between s and t, so as to improve
CPD compression[Salvetti et al., 2017]. Chiari et al. pro-
posed heuristic redundant symbols and proximity wildcards
to compress the size of CPD[Chiari et al., 2019]. Our work
is based on this, and the details will be introduced later. Zhao
et al. proposed a bounded suboptimal CPDs algorithm based
on centroid, which only calculates the first mobile data of the
selected node (centroid)[Zhao et al., 2020], so as to reduce
the storage cost. Among them, the selection of centroid en-
sures that the path cost is within the fixed range of the optimal
solution.

In addition, Salvetti et al. proposed the Topping (Two
Oracle Path Planning) algorithm in combination with SRC
and another well-known path planning algorithm JPS+ (Joint
Point Search+)[Salvetti et al., 2018b]. The main idea is:
given a current node s and a target node t, first call the SRC
algorithm to obtain the best moving direction from s to t,
and then call the JPS algorithm to calculate how many steps
can be repeated in this direction, without the above query
between these steps. In most cases, Topping algorithm can
improve the performance of SRC algorithm by more than
one order of magnitude. Hu et al. proposed Tops and Top-
ping+ algorithms[Hu et al., 2021]. Compared with Topping,
Tops algorithm calculates the CPD data of all nodes. It only
calculates the CPD data of jump points and reduces the pre-
processing memory. Topping+ algorithm extracts a series of
complete paths from the successor node of each start node
to the target node for the motivation that the number of hops
from the successor node of each start node to the target node
may be very small relative to the number of single grid steps.
Among all the extracted paths, the path with the lowest total
cost is selected and returned as the optimal solution. In terms
of online query speed, Tops and Topping+ are competitive
compared with Topping algorithm.

Algorithm 1 CPDs(s, t)
Input: start node s, target node t
Output: shortest path p[]

1: p[]
2: while s ̸= t do
3: (s, n)← CPD(s, t)
4: p← p + [(s, n)]
5: s← n
6: end while
7: return p[]

3 Background
We introduce the background information of compressed path
database, heuristic redundant symbols and proximity wild-
cards, which is necessary to understand the new contribution
of this paper.

CPDs. CPDs is a path planning algorithm based on prepro-
cessing acceleration technology. It uses pre calculated all
pairs shortest paths (APSP) data to quickly find the short-
est path without any state space search[Wu et al., 2012].
CPDs algorithm calculates APSP data through a data struc-
ture called CPD. Building CPD requires a series of iterations.
Each iteration uses different nodes s as the source (search
root) and runs Dijkstra algorithm. The Dijkstra algorithm can
be slightly modified to generate the first-move array T(s). In
T(s), all nodes t reachable from s are assigned a label called
the first-move, which identifies the initial movement of all
shortest paths from s to t, that is, the first-move. Finally, com-
press the first-move array T(s) to end the current iteration.
Since each iteration is independent, the time efficiency can
be improved by parallel computing technology. The gridmap
shown in Figure 1 demonstrates the preprocessing process of
building a CPD from the source node s. For example, there
are two best first moves from s to the node in the lower right
corner of the map: E and SE.

The compression method adopts RLE, which compresses
the first-move array by more compactly representing the sub-
string(called runs) composed of the repetition of the same
symbol. For example, the first line of symbol string in
Fig.1 W;W;W;(W,E);E;E;E can be represented by two runs
WW and EEE. Each such substring can be effectively re-
placed by a pair of values, one of which represents the
start index (substring start position) and the other repre-
sents the relevant symbol. RLE finally represents the sym-
bol string in the first line of the example as 1W;5E more
concisely. The entire first-move array is compressed into 11
runs: 1W;5E;8W;12E;15W;20E;22W;26E;29SW;32S;33SE.
Because there is no need to find the movement from s to the
obstacle node and the source node, such nodes are assigned a
label called the wildcard “*” by default.

After the preprocessing step is completed, the online search
stage can retrieve the shortest path by repeatedly calling the
CPD search function CPD(s, t), which performs a binary
search on the compressed string of a given source node s to
find the best first-move of the target node t. The extraction
process of the shortest path is shown in Algorithm 1[Chiari et
al., 2019].

Figure 1: The optimal first moves to each cell of the gridmap from
the cell marked s. Black cells indicate obstacles.[Chiari et al., 2019]

Heuristic Redundant Symbols. Heuristic redundant sym-
bols reduce the size of CPD by using heuristic information.
The specific contents are as follows

Set s as the start node, t as the target node, and function
Fx(s, t) returns the movement(heuristic move) of the mini-
mum estimated distance through node n, and the expression
is[Chiari et al., 2019]:

Fx(s, t) = argmin
(s,n)∈E

{w(s, n) + fx(n, t)} (1)

Where w(s, n) is the cost of walking, the straight line direc-
tion is 1, the oblique direction is

√
2, and fx(n, t) is a prede-

fined heuristic distance function. If function fx(n, t) returns
the first-move array T(t) belonging to s, then the heuristic re-
dundant symbol “h” is added to T(t) of s. Heuristic redundant
symbols make the compression step more flexible to select
the symbols to be stored. Heuristic distance function can be
calculated simply, such as octile distance function

fo(n, t) =
√
2 ∗ c+ |n.x− t.x| − c+ |n.y − t.y| − c

where c = min(|n.x− t.x|, |n.y − t.y|)
(2)

or the Euclidean distance function

fe(n, t) =
√
(n.x− t.x)2 + (n.y − t.y)2. (3)

Proximity Wildcards. Proximity wildcards further ex-
ploits the potential of heuristic move by paying attention to
the adjacent areas around nodes. Generally, for any node,
the nodes contained in the surrounding adjacent area will use
heuristic move as the first-move. Using this idea, the concept
of proximity wildcards is introduced to further improve the
compression efficiency of CPD.
Definition 1. Given a node s and a function Fx(s, n), the
proximity distance pd(s) is the lowest value d ∈ N such that
there exists a cell n for which |s.x-n.x| ≤ d+ 1 or |s.y-n.y| ≤
d + 1, and Fx(s, n) /∈ T(n) for s, where T is the first-move
array for s.[Chiari et al., 2019]
Definition 2. The proximity square of a node s is the square
centred in s and with the edge size equal to 2 · pd(s) +
1.[Chiari et al., 2019]

Algorithm 2 CPDHP(s, t)
Input: start node s, target node t
Output: first-move m

1: d← pd(s)
2: if |s.x-n.x| ≤ d ∧|s.y-n.y| ≤ d then
3: return Fx(s, t)
4: else
5: m← CPD(s, t)
6: if m = “h” then
7: return Fx(s, t)
8: else
9: return m

10: end if
11: end if

Figure 2: Heuristic move for source cell s. Heuristic moves that
coincide with optimal moves are shown in bold.

In short, the grid cells in the adjacent square of any node
s can be reached from s optimally by heuristic move. Add
the proximity wildcards symbol ”*” to each such cell. Algo-
rithm 2 shows the CPD lookup function CPDHP(s, t) using
proximity wildcards[Chiari et al., 2019].

4 RPW Strategy
In this paper, we propose RPW strategy to further improve
the compression efficiency of CPD by expanding the adjacent
area concerned by proximity wildcards. The main idea is to
expand the focus area of proximity wildcards from square to
rectangle centered on any node, so as to consider more heuris-
tic move.
Definition 3. Given a node s and a function Fx(s, n), the
width of the largest adjacent rectangle R centered on s is ex-
pressed as sq(s).x and length are expressed as sq(s).y, any
node n ∈ R, fx(s, n)∈ T(n), T is the first-move array of s.

The cells in the RPW area can arrive from s optimal by
heuristic move. Add the RPW symbol ”*” to each such cell.
Fig.2 shows the map heuristic move and the first move coin-
cidence area, in which the dotted line area is the proximity
wildcards area and the solid line area is the improved RPW
area.

As can be seen from the example, the compression result
of the first-move array added with proximity wildcards is:

Algorithm 3 CPDHRP(s, t)
Input: start node s, target node t
Output: first-move m

1: X← sq(s).x
2: Y ← sq(s).y
3: if |s.x-n.x| ≤ X/2 ∧|s.y-n.y| ≤ Y/2 then
4: return Fx(s, t)
5: else
6: m← CPD(s, t)
7: if m = “h” then
8: return Fx(s, t)
9: else

10: return m
11: end if
12: end if

Figure 3: Heuristic moves, for each source cell.

1N;5h;10N;14h;19W;26h;27E;28h;37W;43h, 10 RLE runs in
total. The compression result of the first-move array added
with RPW is: 1N;5h;10N;14h;19W;27E;28h;37W;45h, 9
RLE runs in total.

It can be seen from the example that RPW produces less
RLE runs. In the preprocessing stage, fewer RLE runs pro-
duce smaller CPD, that is, improve the compression effi-
ciency of CPD. In the online search stage, the adjacent area
is improved from square to rectangle, which expands the area
of heuristic move nodes and reduces the number of binary
search nodes, so as to improve the search efficiency. Algo-
rithm 3 shows the CPD lookup function CPDHRP(s, t) using
RPW.

5 CPW Strategy
Based on the idea of RPW, we further tap the potential of
heuristic move and propose CPW. The main idea is to di-

Algorithm 4 CPDHCP(s, t)
Input: start node s, target node t
Output: first-move m

1: if GetCPW(s, t) then
2: return Fx(s, t)
3: else
4: m← CPD(s, t)
5: if m = “h” then
6: return Fx(s, t)
7: else
8: return m
9: end if

10: end if

Algorithm 5 GetCPW(s, t)
Input: start node s, target node t
Output: false or true

1: for n = 1 to 4 do
2: X.n← sq(s)n.x
3: Y.n← sq(s)n.y
4: end for
5: Judge that node t is relative to s, which belongs to the nth

quadrant
6: if |s.x-n.x| ≤ X.n ∧|s.y-n.y| ≤ Y.n then
7: return true
8: else
9: return false

10: end if

vide four quadrants with any node as the origin, and calculate
the maximum rectangle with the origin as the corner of each
quadrant, including the heuristic move as the first move.
Definition 4. Given a node s and a function Fx(s, n),CPW
area C consists of four largest rectangles Rm with s as the
corner, the length and width of each quadrant rectangle Rm

are expressed as sq(s)m.x and sq(s)m.y, m∈[1,4], any node
n ∈ C, fx(s, n)∈ T(n), T is the first-move array of s.

Fig.4 is a gridmap for explaining CPW, with 8 cells la-
belled from a to h. As can be seen from the Fig.4, the com-
pression result of the first-move array added with proxim-
ity wildcards is: 1E;1S;1*;1N2h7S8h;1*;1E;1N;1*, 11 RLE
runs in total. The compression result of the first-move array
added with CPW is: 1E;1S;1*;1N7S;1*;1E;1N;1*, 9 RLE
runs in total.Algorithm 4 shows the CPD lookup function
CPDHCP(s, t) using CPW.

6 Experiments
Our experimental map uses GPPC benchmark data set,
and the detailed content is available on the website
https://movingai .com/benchmarks/grids.html. The experi-
ment compares SRC and CPDs PW agorithms. The former is
the fastest optimal routing algorithm in GPPC2014, and the
latter is one of the latest significant improvements to improve
the compression efficiency of CPDs algorithm proposed by
Chiari et al. In 2019. A total of 20 maps were randomly se-
lected in the experiment, including 10 large maps (the number

Maps SRC CPDs PW CPDs RPW CPDs CPW
AcrosstheCape 4.91604e+08 3.17361e+08 3.11477e+08 4.19476e+08

Aftershock 1.55618e+08 7.75273e+07 7.18444e+07 1.24055e+08
Ost000a 2.25754e+08 1.77554e+08 1.60905e+08 2.60633e+08
Ost000t 5.36637e+08 2.04589e+08 1.80405e+08 4.51991e+08
Hrt000d 1.92737e+08 1.25186e+08 1.17753e+08 1.84425e+08
Aurora 6.18983e+08 9.15982e+08 5.24567e+08 5.5833e+08

Room-400-40 2.18523e+08 8.22203+07 7.74602e+07 1.12926e+08
Brushfire 3.85427e+08 1.06776e+08 1.00989e+08 1.70673e+08

Backwoods 2.41827e+08 1.49382e+08 1.49275e+08 2.30434e+08
Archipelago 3.77199e+08 1.45075e+08 1.4068e+08 1.95728e+08

Lt-0-lowtown 9.4645e+07 3.86112e+07 3.51392e+07 5.8889e+07
Hrt201n 7.4938e+07 3.00384e+07 2.81146e+07 4.87035e+07
Lak100c 2.67651e+08 7.70831e+07 7.48599e+07 1.17073e+08
Brc999d 7.226e+06 4.85746e+06 4.67299e+06 7.13153e+06
Brc000d 4.7518e+07 6.14427e+07 2.02706e+07 2.7048e+07
Combat 2.5543e+07 1.80605e+07 1.12542e+07 1.45937e+07
Combat2 2.2722e+07 2.22453e+07 1.14053e+07 1.47449e+07
Den000d 7.7793e+07 8.33914e+07 4.44911e+07 6.48382e+07
Isound1 2.297e+06 1.21058e+06 9.45433e+05 1.34359e+06
Orz000d 6.122e+06 3.03397e+06 2.96867e+06 3.60955e+06

Table 1: Search time (ns)

of nodes ranges from 100000 to 300000) and 10 small maps
(the number of nodes ranges from thousands to tens of thou-
sands).

In Table 1, we compare the search time of the algorithm. It
can be seen that the search time of our proposed CPDs RPW
algorithm on all maps is better than that of CPDs PW algo-
rithm and performs best in all comparison algorithms. Al-
though compared with CPDs PW algorithm, CPDs CPW al-
gorithm has higher search time efficiency on only 25% of
the maps, because its query function is slightly complex.
However, compared with CPDs PW algorithm, the search
time is less than SRC algorithm on 85% of the maps, and
CPDs CPW algorithm has better time performance than SRC
algorithm in 95% of the maps.

In Table 2, we compare the CPD size of the algorithm.
The CPD size (the third row) of the last three column al-
gorithm is composed of the size of the first-move arry (the
first row) and auxiliary data (the second row) It can be seen
from the table that the CPD size generated by CPDs RPW
algorithm on all maps is smaller than that of CPDs PW algo-
rithm, and the average compression efficiency is increased by
0.626% and the maximum is increased by 3.644%. Although
CPDs CPW algorithm only has a smaller CPD size than
CPDs PW algorithm on the three maps of ost000a, ost000t
and brc000d, CPDs CPW algorithm performs best among
all algorithms in the first-move arry size. The reason for
this result is that although CPDs CPW generates a smaller
first-move arry by using more heuristic information, its aux-
iliary data is slightly complex. Compared with CPDs RPW,
it needs to record auxiliary data of 4 times the size. In the
future, the overall compression capacity can be improved by
proposing a suitable data structure to store auxiliary informa-
tion.For the first-move arry size index, the CPDs CPW algo-
rithm is smaller than the CPDs RPW algorithm on all maps,

and the CPDs RPW algorithm is smaller than the CPDs PW
algorithm, because the CPW area is greater than or equal to
the RPW area, and the RPW area is greater than or equal to
the PW area.

7 Conclusions
In this paper, we propose a strategy to expand the area of
proximity wildcards, which makes the selection of storage
symbols more flexible in the compression process of CPDs
algorithm, and makes more heuristic information available
in the online search process, so as to compress the prepro-
cessing memory of the algorithm and speed up the search
speed. The experimental results show that our CPDs RPW
algorithm is better than the famous CPDs PW algorithm in
CPD size and search time. Although CPDs CPW algorithm is
only smaller than CPDs PW algorithm in CPD size on three
maps, it performs best in all comparison algorithms in the
first-move arry size index, and has the value of further min-
ing. For the search time, although CPDs CPW algorithm is
only less than CPDs PW algorithm on 25% of the maps, com-
pared with 85% of the maps, CPDs PW algorithm has better
search time than SRC algorithm, an increase of 10 percentage
points.

Future work includes further improving the storage struc-
ture of CPW, or extending the method proposed in this paper
to a more general map environment.

Acknowledgments
This work was supported by the National Natural Sci-
ence Foundation of China (62076108,61872159) and
the Natural Science Foundation of Jilin Province,China
(20210101172JC).

Maps #cells SRC CPDs PW CPDs RPW CPDs CPW

AcrosstheCape 392287 393,982,688
93,442,946 93,399,202 90,807,038
1,569,152 1,569,148 6,276,592
95,012,098 94,968,350 97,083,630

Aftershock 166076 98,649,280
8,489,870 8,431,926 7,031,206
664,308 664,304 2,657,216

9,154,178 9,096,230 9,688,422

Ost000a 130478 43,694,864
15,235,418 15,140,750 13,665,046

521,916 521,912 2,087,648
15,757,334 15,662,662 15,752,694

Ost000t 105707 37,412,692
12,905,754 12,832,906 11,588,290

422,832 422,828 1,691,312
13,328,586 13,255,734 13,279,602

Hrt000d 106608 63,647,320
10,623,498 10,576,214 9,446,582

426,436 426,432 1,705,728
11,049,934 11,002,646 11,152,310

Aurora 493772 721,667,952
339,836,578 339,707,250 337,770,534
1,975,092 1,975,088 7,900,352

341,811,670 341,682,338 345,670,886

Room-400-40 152811 115,268,864
73,630,454 73,532,894 72,066,842

611,248 611,244 2,444,976
74,241,702 74,144,138 74,511,818

Brushfire 104896 53,078,056
8,689,822 8,670,174 8,148,766
419,588 419,584 1,678,336

9,109,410 9,089,758 9,827,102

Backwoods 208734 104,640,280
12,977,478 12,976,142 12,171,646

834,940 834,936 3,339,744
13,812,418 13,811,078 15,511,390

Archipelago 131770 77,202,656
35,521,790 35,394,978 34,175,678

527,084 527,080 2,108,302
36,048,874 35,922,058 36,283,980

Lt-0-lowtown 25259 5,340,272
1,783,246 1,761,462 1,609,202
101,040 101,036 404,144

1,884,286 1,862,498 2,013,346

Hrt201n 23652 3,214,980
876,982 841,578 719,314
94,612 94,608 378,432

971,594 936,186 1,097,746

Lak100c 34832 8,267,200
1,467,790 1,457,886 1,271,870
139,332 139,328 557,312

1,607,122 1,597,214 1,829,182

Brc999d 12847 6,233,664
691,242 687,446 604,238
51,392 51,388 205,552

742,634 738,834 809,790

Brc000d 28963 10,904,540
3,276,682 3,257,610 2,970,982
115,856 115,852 463,408

3,392,538 3,373,462 3,371,390

Combat 32967 27,875,952
2,769,594 2,740,054 2,500,334
131,872 131,868 527,472

2,901,466 2,871,922 3,027,806

Combat2 32929 27,717,888
2,756,078 2,726,894 2,494,490
131,720 131,716 526,864

2,887,798 2,858,610 3,021,354

Den000d 58085 23,714,500
9,540,390 9,512,398 8,970,534
232,344 232,340 929,360

9,772,734 9,744,738 9,899,894

Isound1 2976 587,424
60,002 59,574 54,242
11,908 11,904 47,616
71,910 71,478 99,858

Orz000d 4057 973,936
150,822 150,634 124,230
16,232 16,228 64,912

167,054 166,862 189,142

Table 2: The size of the CPD in MB

References
[Botea and Harabor, 2013] Adi Botea and Daniel Harabor.

Path planning with compressed all-pairs shortest paths
data. In Proceedings of the Twenty-Third Interna-
tional Conference on Automated Planning and Scheduling,
Rome, Italy, pages p.10–14, 2013.

[Chiari et al., 2019] Mattia Chiari, Shizhe Zhao, Adi Botea,
Alfonso Emilio Gerevini, Daniel Harabor, Alessandro
Saetti, Matteo Salvetti, and Peter J. Stuckey. Cutting
the size of compressed path databases with wildcards
and redundant symbols. In Proceedings of the Twenty-
Ninth International Conference on Automated Planning
and Scheduling, Berkeley, CA, USA, pages p.11–15, 2019.

[Cohen et al., 2018] Liron Cohen, Tansel Uras, Shiva
Jahangiri, Aliyah Arunasalam, Sven Koenig, and
T. K. Satish Kumar. The fastmap algorithm for shortest
path computations. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence,
Stockholm, Sweden, pages p.13–19, 2018.

[Freund and Hoyer, 2003] E. Freund and H. Hoyer. Pathfind-
ing in multi-robot systems: Solution and applications. In
Robotics and Automation. Proceedings. 1986 IEEE Inter-
national Conference on, 2003.

[Harabor and Stuckey, 2018] Daniel Damir Harabor and Pe-
ter J. Stuckey. Forward search in contraction hierar-
chies. In Proceedings of the Eleventh International Sympo-
sium on Combinatorial Search, Stockholm, Sweden, pages
p.14–15, 2018.

[Hu et al., 2019] Yue Hu, Daniel Harabor, Long Qin, Quan-
jun Yin, and Cong Hu. Improving the combination of JPS
and geometric containers. In Proceedings of the Twenty-
Ninth International Conference on Automated Planning
and Scheduling, Berkeley, CA, USA, pages p.11–15, 2019.

[Hu et al., 2021] Yue Hu, Daniel Harabor, Long Qin, and
Quanjun Yin. Regarding goal bounding and jump point
search. J. Artif. Intell. Res., 70:631–681, 2021.

[Rabin and Sturtevant, 2016] Steve Rabin and Nathan R.
Sturtevant. Combining bounding boxes and JPS to prune
grid pathfinding. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, Phoenix, Arizona,
USA, pages p.12–17, 2016.

[Salvetti et al., 2017] Matteo Salvetti, Adi Botea, Alessan-
dro Saetti, and Alfonso Emilio Gerevini. Compressed path
databases with ordered wildcard substitutions. In Proceed-
ings of the Twenty-Seventh International Conference on
Automated Planning and Scheduling, Pittsburgh, Pennsyl-
vania, USA, pages p.18–23, 2017.

[Salvetti et al., 2018a] Matteo Salvetti, Adi Botea, Al-
fonso Emilio Gerevini, Daniel Harabor, and Alessandro
Saetti. Two-oracle optimal path planning on grid maps.
In Proceedings of the Twenty-Eighth International Con-
ference on Automated Planning and Scheduling, Delft, The
Netherlands, pages p.24–29, 2018.

[Salvetti et al., 2018b] Matteo Salvetti, Adi Botea, Al-
fonso Emilio Gerevini, Daniel Harabor, and Alessandro

Saetti. Two-oracle optimal path planning on grid maps.
In Proceedings of the Twenty-Eighth International Con-
ference on Automated Planning and Scheduling, Delft, The
Netherlands, pages p.24–29, 2018.

[Sturtevant and Rabin, 2016] Nathan R. Sturtevant and Steve
Rabin. Canonical orderings on grids. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial
Intelligence, New York, USA, pages p.9–15, 2016.

[Sturtevant et al., 2015] Nathan R. Sturtevant, Jason M.
Traish, James R. Tulip, Tansel Uras, Sven Koenig, Ben
Strasser, Adi Botea, Daniel Harabor, and Steve Rabin. The
grid-based path planning competition: 2014 entries and
results. In Proceedings of the Eighth Annual Symposium
on Combinatorial Search, Ein Gedi, the Dead Sea, Israel,
pages p.11–13, 2015.

[Uras and Koenig, 2014] Tansel Uras and Sven Koenig.
Identifying hierarchies for fast optimal search. In Carla E.
Brodley and Peter Stone, editors, Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence,
Québec City, Québec, Canada, pages p.27–31, 2014.

[Uras and Koenig, 2017] Tansel Uras and Sven Koenig. Fea-
sibility study: Subgoal graphs on state lattices. In Alex
Fukunaga and Akihiro Kishimoto, editors, Proceedings
of the Tenth International Symposium on Combinatorial
Search, Pittsburgh, Pennsylvania, USA, pages p.16–17,
2017.

[Wu et al., 2012] Lingkun Wu, Xiaokui Xiao, Dingxiong
Deng, Gao Cong, Andy Diwen Zhu, and Shuigeng Zhou.
Shortest path and distance queries on road networks: An
experimental evaluation. Proc. VLDB Endow., 5(5):406–
417, 2012.

[Xiao and Hao, 2011] C. Xiao and S. Hao. A*-based
pathfinding in modern computer games. International
Journal of Computer ence Network Security, 11(1):p.125–
130, 2011.

[Zhao et al., 2020] Shizhe Zhao, Mattia Chiari, Adi Botea,
Alfonso Emilio Gerevini, Daniel Harabor, Alessandro
Saetti, and Peter J. Stuckey. Bounded suboptimal path
planning with compressed path databases. In Proceedings
of the Thirtieth International Conference on Automated
Planning and Scheduling, Nancy, France, pages p.26–30,
2020.

	Introduction
	Related Work
	Background
	RPW Strategy
	CPW Strategy
	Experiments
	Conclusions

