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Abstract

For the modern very-large-scale integrated (VLSI)
circuit design, placement plays an important role in
timing closure and routability. To achieve a place-
ment with better timing result, this paper designs a
timing-driven placement framework by introducing
a novel incremental weighting mechanism. During
placement iteration, we propose a net weight and
path weight mechanism by evaluating the criticality
of timing metrics to guide the direction and step of
cell movement. To update the net and path weight
procedure, we introduce a timing criticality graph,
and use a momentum method to search next net
weight. Compared with our incremental weighting
mechanism, the state-of-the-art placer “ePlace” is
62.5% and 72.0% worse on timing metric total neg-
ative slack (TNS) and worst negative slack (WNS)
respectively in ICCAD-2015 benchmarks.

1 Introduction

In VLSI design, placement is performed in the early stage
of physical design, and placement almost decide the location
of standard cells and the length of interconnects in the lay-
out. Due to its complexity, the placement problem is gen-
erally divided into three steps, global placement (GP), legal-
ization (LG), detail placement (DP) respectively. GP roughly
spreads out standard cells, and these locations are corrected
by LG&DP. With the increasing impact of interconnects in
modern chip design, timing closure becomes extreme diffi-
cult in the post physical design [Lu, 2017]. The typical goal
of placement is to minimize the total wirelength of a de-
sign as it indirectly affects the routability, power consump-
tion, and timing of circuit. Although minimizing the total
wirelength can improve timing in general, it inevitably ig-
nores some of the more critical paths such as timing-critical
paths [Shahsavani and Pedram, 2020]. Timing-driven place-
ment aims at considering timing metric (ex. data slack) into
cell placement. Since accurate timing information cannot be
evaluated until post-routing stages, most timing-driven plac-
ers [Bock et al., 2015] use Flute [Chu and Wong, 2007] as
the Steiner tree generator to evaluate wire delay for timing
analysis. And lots of work [Mangiras et al., 2019] invoke the

static timing analysis (STA) engine to evaluate timing met-
rics. But there are some works [Guth et al., 2015] directly
calculate the timing metrics according to Elmore model,

1.1 Previous Works

Current the state-of-the-art placers are analytical method.
They formulate the global placement problem into an un-
constrained optimization problem and solve it by gradi-
ent descent algorithms. ePlace [Lu et al., 2015] is the out-
standing representative of analytical placement. ePlace de-
velops a novel placement density function “eDensity”, us-
ing the first-order optimization method Nesterov to iter-
atively solve the placement problem. Based on ePlace,
lots of workS are proposed to further optimize the den-
sity function [Cheng et al., 2018] [Zhu et al., 2018], runtime
[Lin et al., 2020] etc.

Timing-driven placement can be summarized in two di-
rections, net-based approach and path-based approach re-
spectively. Net-based approach converts the obtained tim-
ing metrics into net weights and involve them during the it-
erative process of placement [Liao et al., 2022]. Due to its
simplicity and effectiveness, net-Based approaches are of-
ten used in global placement stage. Path-based approach
constrains timing critical paths to reduce critical timing vi-
olations. They transform the problem into a mathematical
programming problem [Mangiras et al., 2019], and solve the
problem by some heuristic approaches [Guth et al., 2015].

1.2 Our Contributions

To summarize previous timing-driven placement work, they
lack holistic solutions. Timing is usually not considered in the
iterative process of analytical placers. Besides, the placement
work dedicated to improving timing focus on local correction
of standard cell positions in detail placement stage, limiting
the global movement of standard cells.

To solve these problems, we propose an adaptive net and
path weighting for timing-driven placement framework. Our
main contributions are summarized as follows:

• With timing metrics, we propose a flexible timing crit-
icality evaluation. To achieve suitable timing accu-
mulation, we present two timing criticality propagation
schemes (max and sum) to adapt calculating WNS and
TNS.



• With timing criticality, a timing momentum scheme is
proposed to update the variation of net weight instead
of net weight. Besides current step, this scheme also
considers history step into update procedure, which can
avoid the violent oscillation of net weights.

• To convert timing criticality into path weights, we
present a offset search window to guide cell relocation.

• Our approach achieves 62.5% and 72.0% better on WNS
and TNS respectively in ICCAD-2015 benchmarks com-
pared with the state-of-the-art placer.

The remainder of this paper is organized as follows. Sec-
tion 2 is the preliminary. We introduce timing criticality in
Section 3. Section 4 presents the proposed weight method
for net and path. Experimental results of our method are pre-
sented in Sections 5, respectively.

2 Preliminaries

In this section, we introduce the placement problem at first.
Then we introduce timing metrics, and we formulate the
timing-driven placement by net-weighting. Finally, we for-
mulate the timing optimization problem.

2.1 Placement Problem

In VLSI placement problem, we treat the cells in a circuit
as vertices C, and the nets as hyperedges N . Then we get
the hypergraph G(C,N ). The basic goal of placement is to
minimize the total wirelength, while satisfying the constraints
of the circuit (density, timing, routability etc.)

min
x,y

:
∑

e∈N

WLe(x, y) (1)

s.t. : Db(x, y) ≤ D0, ∀b ∈ B,

: Other constraints.

Here, (x, y) is the location of cell. WLe(x, y) represents
wirelength. The layout is evenly divided into bins B, and
we calculate the density of each bin. Db(x, y) is density ex-
pression and D0 is target density. Global placement usually
considers wirelength and density. The density constraint is
usually transformed as a penalty term into objective function.

min
x,y

:
∑

e∈N

WLe(x, y) + α
∑

b∈B

Db(x, y), (2)

where α is the density penalty parameter, and WLe(x, y) can
be modeled using the half-perimeter wirelength (HPWL),

WLHPWL
e (x, y) = max

i∈e
xi−min

i∈e
xi+max

i∈e
yi−min

i∈e
yi. (3)

Problem (2) can be solved by gradient optimization approach,
if the wirelength and density objective function are smooth.
A suitable approximation smooth function for HPWL is
weighted average (WA) [Lu et al., 2015].

WLWA
e (x, y) =

∑

i∈e

xi exp(xi/γ)

∑

i∈e

exp(xi/γ)
−

∑

i∈e

xi exp(−xi/γ)

∑

i∈e

exp(−xi/γ)

(4)

+

∑

i∈e

yi exp(yi/γ)

∑

i∈e

exp(yi/γ)
−

∑

i∈e

yi exp(−yi/γ)

∑

i∈e

exp(−yi/γ)
,

Figure 1: Timing propagation example. Suppose a, b ∈
PI g, h ∈ PO and required time in PO as 18. After tim-
ing propagation, we can calculate timing metrics and worst
path (a→ c→ f → h).

where γ is the smoothing parameter that controls the accu-
racy of the model. ePlace [Lu et al., 2015] proposes a novel
density representations, called electric field method, which
treats the cells as positive charges. The electric field method
uses the Poisson’s equation to model electric potential and
electric field distribution, combined with Neumann boundary
and compatibility conditions, to construct partial differential
equations.







∇ · ∇ψ(x, y) = −ρ(x, y),
n̂ · ∇(x, y) = 0, (x, y) ∈ ∂R,
∫∫

R
ρ(x, y)dxdy =

∫∫

R
∇(x, y)dxdy,

(5)

where, ρ(x, y) is the electric density expression, which is us-
ing to described cell density. ψ(x, y) represents the electric
potential, and R is the placement region.

Finally, global placer calculates the gradients of wirelength
and density ∇WLWA

e and ∇ρ(x, y), and updates the location
of cells by nesterov gradient method [Nesterov, 1983].

2.2 Timing Metrics

A sequential circuit can be represented by a set C of standard
cells, set PI of primary inputs (circuit inputs or outputs of
sequential cells) and a set PO of primary outputs (circuit out-
puts or inputs of sequential cells) [Guth et al., 2015]. Timing
violation can be classified as two case, the early case and the
late case respectively [Kahng et al., 2011].

Arrival times are measured at the output pin of each cj ∈ C
and at each cj ∈ (PI ∪ PO). Let Fj be the set of cells

connected to the input of cj ∈ C. Let dLi,j and dEi,j denote
the late and early values for the delay measured between ci’s
output and cj’s output. For each cell cj , late arrival time aLj
and early arrival time aEj are defined as below:

aLj = max
ci∈Fj

(aLi + dLi,j), aEj = min
ci∈Fj

(aEi + dEi,j). (6)

Required time describes the signal which needs to arrive at
the specified time, otherwise the clock frequency cannot be
met [Albrecht et al., 2002]. For each cj ∈ PO, let rLj and rEj
denote the late and early required time. To describe the extent
of the timing violation, slack sLj and sEj are used to evaluate
the difference between the arrival time and the required time.

sLj = rLj − aLj , sEj = aEj − rEj , ∀j ∈ PO. (7)



The total negtive slack (TNS) and the worst negtive slack
(WNS) describe the overall timing violation of a circuit.

TNSL/E =
∑

j∈PO

min(0, slack
L/E
j ), ∀j ∈ PO, (8)

WNSL/E = min
j∈PO

slack
L/E
j , ∀j ∈ PO. (9)

In this paper, we resolve late violations first in the placement
stage, since early violations are easier to resolve later. STA
propagates arrival times forward from PI to PO in the re-
verse topological order [Hu et al., 2015]. Figure 1 explains
the calculation process of timing metrics between combina-
torial logic cells.

2.3 Net Weighting Based Timing-Driven Global
Placement

Net weighting is an effective way to distinguish the impor-
tance of connecting nets. Since it does not directly optimize
timing metrics, it is easier to integrate net weights into existed
analytical placement solvers.

However, timing violation information usually is obtained
from STA tools in placement stage. STA tools use topology
propagation to calculate overall timing metrics, while place-
ment calculations are localized to cells or nets. In order to
make up the incompatibility between the placer and the STA,
a effective method is net weighting. With net weighting,
Problem (2) can be formulated as follow Problem (10):

min
x,y

:
∑

e∈N

ωe ·WLe(x, y) + α
∑

b∈B

Db(x, y), (10)

where ωe is timing net weight.

2.4 Timing Optimization Problem

Given the initial location (x0j , y
0
j ) for standard cell j deter-

mined by global placement, the timing optimization problem
is to find a new location (x, y) for each movable cell so as to
minimize the timing violations.

min : −
∑

j∈PO

ŝLj (11)

s.t. : ŝLj ≤ 0, ∀j ∈ PO; (12)

: rLj − aLj ≥ ŝLj , ∀j ∈ PO; (13)

: aLi + dLi,j ≤ aLj , ∀j ∈ C. (14)

Inequation (12) ensures that the selected slack values are all
negative, avoiding paths with no timing violations. Inequa-
tion (13) states that negative slack is less than or equal to
slack. And (14) defines late arrival time for each cell.

Similar to work in [Guth et al., 2015], we relax the tim-
ing constraints by a non-negative Lagrange multiplier λL and
incorporate them into the objective. With the Karush-Kuhn-
Tucker (KKT) conditions and flow conservation, we can fi-
nally get the simplified function:

min :
∑

j∈C

∑

i∈Fj

λLi,j · d
L
i,j (15)

where λLi,j is the path-weight between cells i and j. The func-
tion shows that reducing the product of the delay on path and
the path-weight can also minimize −

∑

j∈PO ŝ
L
j , which can

reduce timing violations.

(a) (b)

Figure 2: An example for timing criticality distribution. (a)
Timing criticality distributes through cell. (b) Timing criti-
cality distributes through net.

3 Timing Criticality

Timing criticality is used to indicate the importance of a net
or path for timing. Subsequent cell movement processes need
to be evaluated by timing criticality.

3.1 Timing Path Endpoint Criticality

As mentioned above, timing constraints are define in PO, so
PO is the starting point for timing critical analysis. Equation
(7) shows the relationship between slack and arrival time, re-
quired time. PO is timing path endpoint, when it’s slack < 0,
timing violation occurs. For each j ∈ PO, we use arrival
time and required time to model the criticality of timing end-
points.

µk+1

j = µk
j · (

aLj
rLj

)β , ∀j ∈ PO, (16)

where µk
j represents the criticality of the k-th iteration of tim-

ing endpoint j. All initial timing criticality in PO are defined
as 1. When timing violation occurs, the criticality value will
be greater than 1. The more serious the violation, the larger
the value, and the higher the corresponding criticality. The
power term β controls the impact of amplifying timing vio-
lations, directing the optimizer to prioritize paths with more
severe violations. In Equation (16), we update k by multipli-
cation instead of addition, which is to keep the timing-critical
information of the previous iteration and avoid timing-critical
oscillations. For example, after violation being eliminated,
the next iteration will regenerate the timing violation. Be-
sides, the reason for using the ratio of arrival time and re-
quired time instead of directly adopting the slack value is that
the slack value is fixed, and the timing critical value can be
flexibly controlled in the form of a ratio.

3.2 Timing Criticality Propagation

After defining timing criticality of timing endpoint, the crit-
icality of timing endpoint needs to be propagated. To calcu-
late the timing criticality of each pin in a sequential circuit,
the propagation mode is in reverse topological order.

The timing criticality distribution through cells is defined
as followed :

µneti,j = µneti,j · (
aLi + dLi,j

aLj
), (17)

where µneti,j represents timing criticality value from pin i to
fanout cell outpin j. An example is shown in Figure 2(a).
Suppose the critical value of net C comes from PO, and the
nets on both sides of the cell should have corresponding criti-
cality, so the critical value needs to be propagated. The timing



criticality proportion of netA from netC depends on whether
it is the path with the maximum delay. Equation (17) is mul-
tiplied by a representative of historical information µneti,j ,
also to prevent timing oscillation. This paper proposes two
propagation methods to control the degree of timing viola-
tions: a) max timing criticality method, and b) sum timing
criticality method, respectively.

The max timing criticality method can find the worst tim-
ing path. We propose the max timing criticality propagation
rule as follow:

µneti = max
j∈neti

µneti,j , (18)

where µneti,j is timing criticality of a sink pin j of net i.
As shown in Figure 2(b), net A and net B need to propa-
gate timing criticality value to net C. The method of max
timing criticality propagation is to select the value with the
largest timing critical value among the two sink pins as the
timing criticality of net C. Weighting high criticality of the
net through max timing criticality propagation can effectively
improve the worst path.

The sum timing criticality propagation can mark the most
important pin among timing paths. we propose the sum tim-
ing criticality propagation rule as below :

µneti =
∑

j∈neti

µneti,j . (19)

As shown in Figure 2(b), the sum of the timing criti-
calities of net A and net B assign to net C. By sum
timing criticality propagation, timing criticality converges
on the important pins that affect multiple timing paths
[Huang and Wong, 2015].

In this paper, we manage these two propagation methods
in a unified manner, and inprove TNS or WNS as needed.

4 Timing Driven Placement

4.1 Framework

In Figure 3, we summarize our timing-driven placement
framework flow based on net-Weight and path-Weight mech-
anism. Gradient optimization iteratively updates cell location
at global placement. During global placement process, net-
weighting module evaluates the criticality of nets and updates
the weight of nets. Then these nets will participate in the next
round of parsing optimizer iterations. And then, the path-
weighting cell relocation module is activated to repair timing
violation, the cell relocation will be performed until the goal
of global placement converges. If it is difficult to converge,
it will even return to the analytical optimizer for large-scale
cell movement.

4.2 Net Weighting Cell Movement

Our goal is to convert timing criticality into net weights
that really participate in the optimization process. In order
to quickly improve the worst timing violation during global
placement stage, we adopt the max timing criticality propa-
gation method. We first normalize for timing criticality.

µ̂neti =
µneti

µmax
. (20)

Figure 3: Our timing-driven placement flow

Algorithm 1 Net Weighting Based Cell Movement

Input: C : Circuit cell set , N : Circuit net set
Parameter: Density penalty α , Net wieght ω
Output: Optimal positions of C

1: for Convergence condition not reached do
2: for all Ci ∈ C do
3: WGi← Calculate wirelength gradient
4: if timing-dirven mode then
5: WGi = ω ·WGi

6: end if
7: DGi← Calculate density gradient
8: Gradient vector∇Fi = WGi + α ·DGi

9: end for
10: New position of Ci by gradient computation
11: end for
12: return Optimal positions of C

Using timing criticality directly as net weight will make some
net weights close to zero without timing violations. There-
fore, we apply the timing criticality to the increment of net
weights. The advantage of setting the net weight increment
is to only increase the weights of nets with timing violations,
while keep the same net weight without timing violations.

Let µ̂k
neti represent the timing criticality value of the net in

the k-th round of iteration. Then we calculate the net weight
increment in current iteration in combination with the criti-
cality value of net in the k − 1 round of iteration.

∆ωk
i = θ · µk−1

i + (1− θ) · µk
i , ∀i ∈ N . (21)

The momentum method is used to consider the net criticality
in the previous step, and combines the net criticality in the
current iteration. Then we can calculate new net weight in-
crementally. If net criticality value is large in previous step,
and the value decrease sharply in current iteration, momen-
tum method ensures that the net criticality value will not de-
crease sharply. The result is used as an increment to current
net weight. For all nets, the increment decrease means that
the net weight involved in the actual optimization process de-



crease. Finally, we update the net weight value.

ωk
i = ωk−1

i +∆ωk
i , ∀i ∈ N . (22)

The net weights are integrated into the update process of the
gradient optimization approach. In the iterative procedure,
the increase in the wirelength gradient of a cell leads to an in-
crease in the overall gradient of the cells. The procedure tends
moving these cells to reduce the distance of the connected
cells. During the global movement of cells driven by timing,
the proximity of cells will lead to new density constraint vi-
olations. At this time, the penalty function term would be
increased to ensure the spacing between cells.

Figure 4: Momentum method for net weighting

4.3 Path Weighting Cell Relocation

Path-weighting can improve timing more accurately. The net
contains multiple timing path segments, but some of them
may be timing violation, and the rest would not. Therefore,
path-weighting can label the importance of the timing path
segments in net.

As mentioned in Equation (15), minimizing the product of
path-weight and delay on path can effectively decrease timing
violations. In this paper, path-weight is from the sum timing
criticality propagation, and delay is between output pins of
two connected cells. Since the location of cell will affect de-
lay, we first analyze the direction of cell relocation. When late
violation occurs at cell j, it should move to the direction with
higher path weight to reduce path delay. As shown in Figure
4, the successor of cell C is cell D, and its predecessor cells
are cell A and cell B. When cell C is in the timing violation
path, vectors vLA,C , vLB,C , vLC,D all point to the connected cell.
The magnitude of each vector is equal to the value of tim-
ing criticality value between these two cells (|vLA,C | = µL

A,C ,

|vLB,C | = µL
B,C , |vLC,D| = µL

C,D). The higher value of the
timing criticality, which results in a “stronger” vector.

Figure 5: Cell relocation direction analysis

In this paper, the solution is to first determine that the cell
is moved to a certain position. Then, we perform a winding
evaluation on the cell at this position, and obtain the timing
evaluation at this position to determine whether to move to a
position favorable for timing. However, if the cell is moved
in a large region, then the search space will be large and the

convergence speed will be slow. Hence, it is necessary to set
a suitable search window to reduce the search space.

Figure 6: The offset search window

The offset of the search window depends on the path
weights. The vector of cell connections is vectorized. As

shown in Figure 6, the vector FL(F̂L) is decomposed into

FL
x (F̂L

x ) and FL
y (F̂L

y ). The modulus of the vector is equal to
the path weight. Suppose a cell i, its lower left corner coordi-
nate is (xi, yi). All vector values in the positive direction of x
are added to |Ri|, and all vector values in the negative direc-
tion of x are added to |Li|. Similarly, we can get the positive
direction of y to the y-axis |Ui|, and the negative direction of
the y-axis |Di|. We set search window size as H ∗W , and
take the location of cell i as the center of window. The coordi-
nate of the lower left corner of the search window is (x0, y0),
where x0 = xi −W/2, y0 = yi − H/2. Finally, we obtain
the location (x̂0, ŷ0) of the offset search window,

x̂0 = xi−
|Li|

|Li|+ |Ri|
·W, ŷ0 = yi−

|Di|

|Di|+ |Ui|
·H (23)

Table 1: ICCAD 2015 contest benchmark statistics.

Benchmark Cells Nets Pins Rows

superblue1 1209716 1215710 3767494 1829

superblue3 1213253 1224979 3905321 1840

superblue4 795645 802513 2497940 1840

superblue5 1086888 1100825 3246878 2528

superblue7 1931639 1933945 6372094 3163

superblue10 1876103 1898119 5560506 3437

superblue16 981559 999902 3013268 1788

superblue18 768068 771542 2559143 1788

5 Experimental Results

We implemented our timing-driven placer in C++ program-
ming language, and performed all experiments on Linux
workstation with 2.3 GHz and 8 GB memory. The gradi-
ent optimization approach is based on open-source placer
ePlace [Lu et al., 2015]. We evaluated our timing-driven
placer on large industrial designs from the ICCAD 2015 con-
test [Kim et al., 2015]. Table 1 gives the benchmark statistics.
A leading academic timer “UI-Timer” [Huang et al., 2014]

supported by the contest was used for timing analysis. We
use “iTP-NetWeight” to represent the method in chapter 4.2,



Table 2: Comparison results on TNS, WNS and HPWL with “ePlace” and open source timing-driven placer “RePlAce-Timing”.

Case
ePlace RePlAce-Timing iTP-NetWeight iTP

TNS WNS HPWL TNS WNS HPWL TNS WNS HPWL TNS WNS

superblue1 -248.30 -25.89 79.63 -193.44 -22.31 79.64 -222.66 -20.84 79.58 -185.97 -19.73

superblue3 -72.01 -29.44 92.50 -49.58 -13.91 92.47 -38.91 -12.52 92.24 -35.01 -11.64

superblue4 -220.94 -25.92 60.03 -182.68 -14.50 60.06 -206.67 -13.20 60.08 -191.07 -11.62

superblue5 -190.08 -44.77 93.14 -154.57 -32.33 93.22 -150.73 -21.58 92.89 -146.12 -20.46

superblue7 -156.53 -17.45 113.58 -119.26 -15.21 113.57 -92.08 -15.21 113.18 -78.52 -15.20

superblue10 -660.60 -27.06 177.95 -588.40 -20.76 175.14 -558.40 -22.86 174.69 -551.03 -20.53

superblue16 -359.14 -36.72 85.22 -270.11 -28.27 85.15 -177.20 -19.07 85.35 -154.40 -19.06

superblue18 -76.32 -10.98 46.96 -51.67 -8.80 47.02 -53.49 -10.96 47.20 -46.74 -9.90

Avg.Ratio1 ×1.454 ×1.611 ×1.003 ×1.111 ×1.121 ×1.001 ×1.000 ×1.000 ×1.000 * *

Avg.Ratio2 ×1.625 ×1.720 * ×1.239 ×1.192 * 1.113 1.068 * ×1.000 ×1.000

TNS : in (×105) ps. WNS : in (×103) ps. HPWL : (×106) um. Avg.Ratio1 on iTP-NetWeight. Avg.Ratio2 on iTP.

and “iTP” is the full work of this paper. We compare “iTP-
NetWeight” with the original “ePlace”, and the open source
timing-driven placer “RePlAce-Timing”. Besides, we applied
our timing-driven placer to the placement of an open source
real chip “ysyx3”, which includes 120,000 standard cells with
40M clock frequency.

In this paper, we use “FLUTE” [Chu and Wong, 2007]

to obtain steiner trees for connected nets among standard
cells [Chowdhary et al., 2005]. Furthermore, global clock
routing is assumed to be ideal (i.e., zero skew among
Flip-Flop’s clock inputs from clock source) to avoid pro-
ducing a susceptible RC-tree topology for the clock net-
work [Huang et al., 2016].

We use timing metrics WNS and TNS , and HPWL to com-
pare with other work. The metrics like overflow and runtime
are not listed. Overflow is used as the termination condition
of the algorithm, and the target condition can be reached by
default. The main running time of our timing-driven place-
ment is in the STA estimator part, because timing estimator
is not belonging to the content of this paper. The solution in
this paper focuses more on the solution quality, so it is not
listed in the following index comparison. All timing critical-
ity on the timing endpoint are initialized to 1, and the β is
set to 2 when the timing violation occurs, otherwise 1. For
the relocation of each cell, we identify 10 candidate positions
uniformly spaced inside a rectangular search window of size
W = H = 20 rows.

Table 2 shows overall TNS,WNS and HPWL compari-
son in net-weighting. These three works (“iTP-NetWeight”,
“ePlace” and “RePlAce-Timing”) have the same global place-
ment stage. The TNS and WNS of “ePlace” are 45.4% and
61.1% worse than iTP-NetWeight under the almost the same
wirelength. On average, “RePlAce-Timing” is also 11.1%
and 12.1% worse on TNS and WNS timing metrics.

iTP shows further timing inprovement through path-
weighting cell relocation. In general, under the weight mech-
anism timing-driven global placement framework and algo-
rithm proposed in this paper, Without considering timing, on
timing metrics TNS, the analytical placer “ePlace” is 62.5%
worse than iTP, and WNS is worse by 72.0%. For the

“RePlAce-Timing” timing-driven placer, the overall timing
metric TNS worse than iTP by 23.9% and WNS worse by
19.2%.

Table 3: Comparison results with “ePlace” in design “ysyx3”.

Design Tool TNS WNS HPWL

ysyx3
ePlace -85.9739 -393381 70.859

iTP -81.4476 -370608 71.959

Improvement Ratio(%) +5.26% +5.79% -1.55%

TNS : in(×103)ps. WNS : in(×103)ps. HPWL : (×105)um.

We apply out timing-driven placer to the actual open source
chip design “ysyx3”. The result show that compared with
“ePlace” without timing-driven, the TNS is improved by
5.26%, and WNS is improved by 5.79%. Although HPWL
loses 1.55%, it is still within the acceptable range. The ex-
perimental results show that our weighting method is still ef-
fective for practical chip design.

6 Conclusion

In this paper, we propose a unified timing improvement
framework that comprehensively considers path-weights and
net-weights. By evaluating timing criticality and moving
cells, we achieve great improvement on the worst negtive
slack (WNS) and the total negtive slack (TNS), respectively
on ICCAD-2015 benchmarks compared with the state-of-the-
art placers. In addition, comparison on the actual open source
design also verify the effectiveness of our placer. The future
work will focus on optimizing skew between sequential cells
to comprehensively consider timing in placement stage.
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