
A Self-stabilizing Memetic Algorithm for Minimum Weakly Connected
Dominating Set Problems

Dangdang Niu1 , Minghao Yin2

1College of Information Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China;
2School of Computer Science and Information Technology, Northeast Normal University, Changchun

130117, China;
niudd@nwafu.edu.cn, ymh@nenu.edu.cn

Abstract

The minimum weakly connected dominating set
problem (MWCDSP), a variant of the classical
minimum dominating set problem, has extensive
real-world applications, such as mobile ad hoc net-
works, distributed sensor network, etc. To address
this problem, a 0-1 integer linear programming
(ILP) model and a framework of memetic algo-
rithm (MA) for MWCDSP are proposed. Specially,
a self-stabilizing algorithm is integrated to the MA
for MWCDSP, which transforms the infeasible so-
lutions created by the operations of initializing pop-
ulations, crossover and mutation etc., into minimal
feasible solutions in linear time. Moreover, a sim-
ple local search algorithm is used to refine the so-
lutions obtained by the self-stabilizing algorithm
in MA. The experimental results on three kinds of
graph instances show that our MA for MWCDSP
significantly outperforms the famous CPLEX, the
self-stabilizing algorithm MWCDS, the genetic algo-
rithm and the local search procedure.

1 Introduction
Consider an undirected, connected graph G = (V, E), where
V denotes the set of vertices, E denotes the set of edges. A
Dominating Set (DS) is a subset S ⊆ V such that for every
vertex v ∈ V, either v ∈ S, or there exist an edge (u, v) ∈ E for
some u ∈ S. If the subgraph induced by a DS is connected,
we call it Connected Dominating Set (CDS). The subgraph
weakly induced by W (W ⊆ V) is defined as Sw = (N[W], E ∩
(W × N[W])), where the set N[W] collects one-hop neighbor
of W and itself. The dominating set W is a Weakly Connected
Dominating set (WCDS) if the subgraph weakly induced by
W is connected. The minimum weakly connected dominating
set problem (MWCDSP) is to identify a weakly connected
dominating set W of minimum size.

The minimum weakly connected dominating set problem
was introduced in 1997 by Dunbar et al. [Dunbar et al.,
1997]. The concept of WCDS has been widely used for clus-
tering in mobile ad hoc networks and distributed sensor net-
work [Pathan and Seon, 2006; Han and Jia, 2007], which is
a better method for clustering than the CDS in general [Yu

et al., 2012]. The WCDS is very suitable for cluster forma-
tion [Han and Jia, 2007], which was used to reduce the num-
ber of cluster heads in the network [Pathan and Seon, 2006]
and solve secure clustering problem which plays an important
role in distributed sensor networks [Pathan and Seon, 2006;
Du et al., 2012]. As finding the minimum WCDS in an arbi-
trary graph is a NP-Hard problem [Dunbar et al., 1997], most
of the above works only proposed polynomial distributed al-
gorithm for WCDS construction in wireless ad hoc networks.
In addition to the computational challenge of NP-Hard com-
plexity for the general graphs, many researches also focus on
the computational complexity of MWCDSP for some special
kinds of graphs [Domke et al., 2005; Lemańska and Patyk,
2008; Raczek and Cyman, 2019]. These researches further
show the theoretical significance of studying MWCDSP.

Compared to the minimum dominating set problem
(MDSP) and the minimum connected dominating set prob-
lem (MCDSP) [Wu et al., 2022; Bonamy et al., 2021], which
are two classical combinatorial optimization problems, more
conditions need to be considered when solving MWCDSP
from their definitions. The main challenges of MWCDSP is
that there are two connected modes for each pair of vertices
in any feasible solution, i.e. directly connected or indirectly
connected (weakly connected) through a common neighbor
vertex, which induces more candidate solutions with respect
to MCDSP.

In order to obtain high-quality WCDS, Some self-
stabilizing algorithms are specially proposed to constructed
minimal weakly connected dominating sets in connected
graphs [Kamei and Kakugawa, 2007; Srimani and Xu, 2007;
Ding et al., 2016]. Most of the above algorithms stabilize
in polynomial steps by using different daemon strategies,
such as unfair central daemon, synchronous daemon, and dis-
tributed daemon etc. Specially, Ding et al. proposed a linear
time self-stabilizing algorithm MWCDS for minimal weakly
connected dominating sets, which terminates in O(n) steps us-
ing a synchronous daemon for an arbitrary connected graph
with n nodes [Ding et al., 2016]. These self-stabilizing al-
gorithms can quickly construct a minimal weakly connected
dominating sets, but it is still difficult to apply them in solving
MWCDSP for complex graphs which usually contains many
local optimal solutions.

Despite the theoretical and practical significance of the
MWCDSP, our literature review indicates that there are few

heuristics or exact algorithms which help to satisfy the
good performance in real-world applications of MWCDSP.
The memetic algorithm (MA), which is a classical heuris-
tic method and can usually provide high-quality approxi-
mate solutions, has been widely used to solve graph opti-
mization problems, such as minimum independent dominat-
ing set problem [Wang et al., 2018b], graph coloring problem
[Dokeroglu and Sevinc, 2021], sum graph coloring problem
[Moalic and Gondran, 2019], etc. The above discussions mo-
tivate us to design efficient MA for MWCDSP, which is a
theoretically feasible way to provide good solutions for real-
world applications of MWCDSP.

In this paper, we present an ILP model which is an ex-
act solution for MWCDSP, and a framework of MA for the
MWCDSP. In our MA, the self-stabilizing algorithm MWCDS
is used to generate initial populations by convert all ran-
dom solutions to minimal WCDSs. Then selection uses the
well known tournament selection operator, and a two-point
crossover and mutation operations are also employed by MA.
We also design a simple local search procedure to refine the
solutions obtained by MWCDS. In our local search procedure,
two score functions are used to search (k-1)-size WCDS after
a k-size WCDS is found. Experimentally, our MA is compet-
itive with the famous CPLEX, the self-stabilizing algorithm
MWCDS, the genetic algorithm and the local search algorithm.

The reminder of this paper is organized as follows: Sec-
tion 2 presents some preliminary knowledge, the ILP model
and the self-stabilizing algorithm for MWCDSP . Section 3
presents the local search procedure for MWCDSP. The con-
crete MA for the minimum weakly connected dominating set
problem are presented in Section 4. Section 5 presents the
experimental results. Finally, Section 6 gives our conclusions
and future works.

2 Preliminaries
2.1 Basic definitions
Consider an undirected, connected graph G = (V, E), where
V denotes the set of vertices, E denotes the set of edges. We
shall use N(v) to represent the neighbor vertex set of v. We
also denote N[v] = N(v) ∪ {v}. The shortest hop path from
u to v is denoted as hop(u, v). Then, the neighboring vertices
with hop paths in [1, i] of the vertex v are collected in Ni(v) =
{u | 1 ≤ hop(u, v) ≤ i}. In addition, we also denote Ni[v] =
Ni(v) ∪ v. We shall extend the above concepts to the vertex
set. Given a vertex set VS ⊆ V, the neighboring vertices with
hop paths in [1, i] of the vertex set VS is presented as Ni(VS)
= {u | 1 ≤ hop(u, v) ≤ i, ∃ v ∈ VS}. In addition, we denote
Ni[VS] = Ni(VS) ∪ VS. The dominating vertex set of a given
vertex set S is denoted as dom(S) = N[S], which collects the
vertices dominated by V S. Some important definitions are
described as follows.

Definition 1 (weakly induced subgraph, WIS). Given an
undirected graph G = (V, E), WISG(W) = (N[W], E1), W ⊆ V,
E1 = {E ∩ (W × N[W])}, subgraph WISG(W) is called the
weakly induced subgraph of graph G based on W.

Definition 2 (weakly connected dominating set, WCDS).
Given an undirected, connected graph G = (V, E), the weakly

connected dominating set W of G is a dominating set such
that WISG(W) is connected.

Given an undirected, connected graph G = (V, E),
the Minimum Weakly Connected Dominating Set Problem
(MWCDSP) is to find a weakly connected dominating set W
of G with minimum cardinality.

2.2 The ILP model for the MWCDSP
We also describe a 0-1 integer linear programming (ILP)
model for the MWCDSP in this section. Our construct-
ing method of ILP model for MWCDSP is mainly derived
from the ILP modes for minimum dominating tree problem
(MDTP) in [Shin et al., 2010]. Obviously, if all weights
of edges are unified, the solutions of MDTP are the span-
ning trees of the minimum connected dominating sets. In or-
der to maintain the weakly connectivity of solutions in ILP
model for MWCDSP, we add a 2-dimensional adjacency ma-
trix Eweak to collect all edges which connect V with N2(V),
which means that for any vertex v ∈ V , there is an edge used
to connect v with each vertex of N2(v) in Eweak. For any
vertex pair (u, v)(u, v ∈ V), if there exists a edge between
them in Eweak, Eweak[u, v] = 1, Eweak[u, v] = 0 otherwise.
Now, we define the following decision variables:

• Let s = {E1, E2,. . . , Ek} (∀Ei⊆Eweak) be a candidate
solution.

• ∀xuv∈{0,1} (u, v ∈ V) is a binary decision variable that
is equal to 1 if and only if (u, v) is selected in the optimal
solution, 0 otherwise.

• ∀yt∈{0,1} (t ∈ V) is a binary decision variable that is
equal to 1 if and only if t is selected in the optimal solu-
tion, 0 otherwise.

We obtain the following ILP model for the WSCP:

f(s) = 1 +
∑

u,v∈V
xuv (1)

xuv ≤ Eweak[u, v], ∀u, v ∈ V
xuv = xvu, ∀u, v ∈ V
yu + yv ≥ 2× xuv, ∀u, v ∈ V∑
u,v∈S

xuv ≤ |S| − 1, ∀S ⊂ V∑
u,v∈V

xuv =
∑
t∈V

yt − 1∑
t∈N [V]

yt ≥ 1, ∀t ∈ V

(2)

The objective function of formula (1) is to minimize the
sum of vertices in the weakly connected dominating set. In
formula (1), the spanning tree consists of all edges with
xuv = 1, which is in correspondence with the weakly con-
nected dominating set. Since the sum of vertices in a con-
nected graph is the sum of edges in its spanning tree plus
1, we add 1 to

∑
u,v∈V xuv in formula (1). In formula (2),

the first two constraints ensures that the set of edges in any
solution is a subset of the edges in Eweak. The third con-
straint shows the relation between vertices and edges in op-
timal solution, that is, for each edge selected in optimal so-
lution, the end vertices has to be selected. The fourth and
fifth constraints are similar to the formulation in Minimum

Spanning Tree problem to guarantee that the solution is a
tree [Shin et al., 2010]. The fourth constraint requires that
the arbitrary subgraph constructed by any subset of edgs set
{xuv | xuv = 1} can not be a cycle. So, combining the fourth
constraint with the fifth constraint, the graph constructed by
{xuv | xuv = 1}must be a tree. The last constraint shows the
constraint of the dominating set. Basically, for each vertex v,
at least one of its neighbors or itself has to be selected to the
optimal solution.

2.3 The self-stabilizing algorithm
The self-stabilizing algorithms can transform infeasible solu-
tions into minimal feasible solutions. The self-stabilizing al-
gorithm MWCDS has been proposed by Ding et al., which is a
linear time complexity algorithm [Ding et al., 2016]. MWCDS
terminates in O(n) steps using a synchronous daemon for an
arbitrary connected graph with n nodes. In their experiments,
MWCDS can be convergence quickly, which is the best self-
stabilizing algorithm for MWCDSP.

In the process of constructing meta heuristic algorithms
for MWCDSP, one of the most important steps is that how
to make an infeasible solution be feasible. Actually, a feasi-
ble solution S of MWCDSP must be weakly connected and
all vertices not in S must be dominated by the vertices in S,
so one can transform infeasible solutions into feasible solu-
tions through adding appropriate nodes repeatedly into them
with some greedy selection rules. However, the qualities of
solutions can not be guaranteed. This motivates us to use the
self-stabilizing algorithm MWCDS to solving the infeasible so-
lutions in our meta heuristic algorithm.

In the MWCDS algorithm, a special node root is required.
Since the MWCDS algorithm will be executed repeatedly, we
compute the shortest distance of any node i to root before
searching. For the MWCDS algorithm, two important variables
need to be maintained [Ding et al., 2016]:

– A boolean membership flag si indicating membership
status of node i in a solution; The current solution S is the
set of nodes with si = 1.

– A non-negative integer variable di that keeps track of the
shortest distance of node i to root.

For any solution, we also define two additional Boolean
predicates for each node i 6= root [Ding et al., 2016]:

enteri ≡ (si = 0) ∧ (∀j ∈ N≤(i) : sj = 0) (3)

leavei ≡ (si = 1) ∧ (∃j ∈ N≤(i) : sj = 1) (4)

In the above formulas, N≤(i) denotes the set of nodes j ∈
N(i) with dj ≤ di.

For any solution S, each vertex enters into or leave from S
are decided by the formula (3) and formula (4) respectively.
If enteri = 0 ∧ leavei = 0 is satisfied for each vertex i, the
current solution S is a minimal weakly connected dominating
set, which can be obtained in linear time [Ding et al., 2016].

3 A simple local search algorithm for
MWCDSP

Though some minimal weakly connected dominating set can
be obtained by the MWCDS algorithm from any initial solu-
tion, the size of the solution obtained by MWCDS is strongly

related to the initial solution and the selected root node. A
graph G and the initial solution {a, d, e} of MWCDSP on
G is depicted as Figure 1. Obviously, the solution {a, d, e}
is weakly connected, but the set of vertices {g, h, i} are not
dominated by it. So the solution {a, d, e} is infeasible.

e df

g

h

i

b

c

a

Figure 1: An exapmle of infeasible MWSCDP solution on the graph.

If we use MWCDS to solve the minimal weakly connected
dominating set with the initial solution {a, d, e} on G, in
which the root a is randomly selected, a minimal weakly con-
nected dominating set {a, b, c, e, g, h, i} is obtained. Obvi-
ously, {a, b, c, e, g, h, i} is weakly connected, and all vertices
are dominated. The result of MWCDS for Figure 1 is shown as
Figure 2.

e df

g

h

i

b

c

a

ee ddff

gg

hh

ii

bb

cc

a

Figure 2: The solution obtained by MWCDS with the root node a for
the solution in Figure 1.

The size of the solution in Figure 2 is 7. Actually, the op-
timal solution of MWCDSP on G is {d, f}, whose size is
2. So a minimal weakly connected dominating set can be got
based on the MWCDS algorithm, but the quality of it can not be
guaranteed. We need make more explorations for the solution
obtained by MWCDS.

In this section, we introduce a simple local search algo-
rithm to refine the solutions obtained by MWCDS, which is
shown as Algorithm 1. In Algorithm 1, two assessment func-
tions are designed for discriminate different vertices.

– Cscore: Cscore in this paper is used to assess the
weakly connected value of any vertex v not in the current
solution S. Given a graph G, for a vertex v not in the current
solution S on G, Cscore(v) indicates how many weakly con-
nected components of the weakly induced subgraph of S on
G are weakly connected with v. If we add the vertex v not in
S into S, Cscore(v) weakly connected components will be
weakly connected as a new weakly connected subgraph.

– Dscore: Dscore is widely used in the local search al-
gorithms for solving the optimization problems which are re-
quired for dominating all vertices [Shin et al., 2010; Wang et
al., 2018a; Wang et al., 2017]. For a vertex v, Dscore(v) =
N [Sv]–N [S], in which S is the current solution and Sv is the
solution after changing v’s status. From the above definition,
Dscore(v) is a positive number when v is added to the cur-

Algorithm 1 LS
Input: an initial weakly connected dominating set W, and

the maximum iteration number ITEM NUM
Output: a better weakly connected dominating set R
1: R←W;
2: for it = 0; it < ITER NUM; it++ do
3: while W is a WCDS do
4: R←W;
5: w←select w from W with the greatest Dscore,

breaking ties randomly;
6: W←W\w;
7: end while
8: w←select w from W with the greatest Dscore, break-

ing ties randomly;
9: W←W\w;

10: v←select v from V − W with the greatest Cscore
value, breaking ties randomly;

11: W←W∪v;
12: end for
13: return R;

rent solution S, and Dscore(v) is a negative number when v
is removed from the current solution S.

The core idea of the local search algorithm LS is that it
searches a better solution with k − 1 vertices after finding
a solution with k vertices. In algorithm 1, after a feasible
solution W is obtained in line 3, the vertices with greatest
Dscore are repeatedly selected and remove from W until W
becomes an infeasible solution through the loops in lines 3-7.
After executing the loops in lines 3-7, an infeasible solution
with |R − 1| vertices is obtained. Then Algorithm 1 intends
to search a feasible solution with |R− 1| vertices through ex-
changing the vertex with the greatest Dscore and the vertex
with the greatest Cscore in lines 8-11.

4 The memetic algorithm for MWCDSP
In this section, we will introduce the memetic algorithm for
MWCDSP, which is shown as Algorithm 2.

Given a connected and undirected graph G = (V,E), a
chromosome of 0-1 sequence for |V | vertices is in correspon-
dence with a MWCDSP solution. For example, the solu-
tion with vertex sequence [a, b, c, d, e, f, g, h, i] in Figure 1 is
in correspondence with a chromosome [1, 0, 0, 1, 1, 0, 0, 0, 0].
In MA, each initial chromosome i.e. solution is generated by
randomly assigning 0 or 1 to each vertex in line 1. A ver-
tex v with a random value 1 means that v is selected into the
solution, otherwise v is not in the solution. The initial indi-
vidual S maybe not a feasible solution, so we use MWCDS to
transform S into a minimal weakly connected dominating set
in line 3, which is further refined by the local search of algo-
rithm 1 in line 4. After the final initial population is identified,
MA updates the found best solution R in line 6.

The binary tournament selection is used in line 8. In
the crossover of line 10, a two-point crossover is used. In
the two-point crossover, two parent chromosomes Parent1
and Parent2 are firstly selected, and two random positions
point1, point2 (let point1 < point2) are chosen from the

Algorithm 2 MA
Input: an undirected and connected graph G = (V,E)
Output: a weakly connected dominating set R
1: RS = init popolution(G);
2: for each solution S in RS do
3: MWCDS(G,S);
4: LS(G,S);
5: end for
6: update R with the best solution in RS;
7: while elasped time < cutoof do
8: FS = Selection(RS);
9: ARS = FS;

10: ARS = ARS ∪ Crossover(FS);
11: ARS = ARS ∪Mutation(ARS);
12: for each solution S in ARS do
13: MWCDS(G,R);
14: LS(G,R);
15: end for
16: update R with the best solution in ARS;
17: RS = Create new population(ARS);
18: end while
19: return R;

chromosome as cut points. The values of vertices from
point1 to point2 in Parent1 and Parent2 are exchanged
with each other, and two children are generated, which
will be added into ARS in line 10. For example, Given
two parent chromosomes Parent1 = [1, 0, 0, 1, 0, 1, 0, 0, 0]
and Parent2 = [0, 0, 1, 0, 0, 1, 0, 0, 0], if point1 = 3
and point2 = 6, two children [1, 0, 1, 0, 0, 1, 0, 0, 0] and
[0, 0, 0, 1, 0, 1, 0, 0, 0] will be obtained by exchanges the two
subsequences from the third position to the sixth position in
Parent1 and Parent2 respectively.

The mutation is used to extend ARS in line 11, in which
some vertex is randomly selected for reversing its status from
each randomly selected chromosome. After executing the
crossover and mutation, MA also uses MWCDS and LS to ob-
tain feasible solutions from ARS in lines 12-14. Then, the
best solution and new population are updated in lines 16-17.

5 Experimental Evaluation
In this section, we present the experimental results obtained
with the proposed memetic algorithm (MA), which will be
compared with the famous CPLEX, the self-stabilizing algo-
rithm named MWCDS, the local search algorithm LS in section
3, and the genetic algorithm GA which is constructed by re-
moving LS from MA.

5.1 Benchmark instances
There are three benchmarks selected in experiments, includ-
ing random UDG benchmarks, LPNMR’09 benchmarks and
Common UDG benchmarks, which are described as follows.
• Random UDG benchmarks (24 instances): This group of

benchmarks is randomly generated with the method used in
[Jovanovic and Tuba, 2013], which is derived from ad hoc
network clustering problems. The ad hoc network clustering
problems are also used to test MWCDS in [Ding et al., 2016].

Table 1: Comparative results of MA with four competitors on the random UDG graph.

Area(N×N) R CPLEX MWCDS GA LS MA
Nodes Solu. Stat. Best Avg Time Best Avg Time Best Avg Time Best Avg Time

80
15

15 6 46.98 6 6.6 <0.01 6 6 <0.01 6 6 <0.01 6 6 <0.01
16 6 89.13 6 6 <0.01 6 6 <0.01 6 6 <0.01 6 6 <0.01
17 6 12.37 6 6 <0.01 6 6 <0.01 6 6 <0.01 6 6 <0.01
18 6 8.65 6 6 <0.01 6 6 <0.01 6 6 <0.01 6 6 <0.01
19 6 6.67 6 6 <0.01 6 6 <0.01 6 6 <0.01 6 6 <0.01
20 4 10.75 5 5.5 <0.01 4 4 <0.01 4 4 <0.01 4 4 <0.01

100
20

20 8 2369.32 8 8.5 <0.01 8 8 <0.01 8 8.2 <0.01 8 8 <0.01
21 6 1883.2 6 6.8 <0.01 6 6 <0.01 6 6 <0.01 6 6 <0.01
22 5 Feasible 5 6.6 <0.01 5 5 <0.01 6 6 0.28 5 5 0.02
23 6 2539.74 7 7.4 <0.01 6 6 <0.01 7 7 <0.01 6 6 0.08
24 6 2598.65 6 7.3 <0.01 6 6 <0.01 6 6 <0.01 6 6 <0.01
25 5 Feasible 6 6.4 <0.01 5 5 <0.01 5 5.8 0.05 5 5 <0.01

100
25

20 N/A N/A 9 9 <0.01 7 7 <0.01 8 8.8 0.04 7 7 0.06
21 N/A N/A 8 8.8 <0.01 7 7 <0.01 8 8.2 0.01 7 7 0.02
22 N/A N/A 8 8.8 <0.01 6 6 <0.01 8 8.5 0.01 6 6 0.13
23 N/A N/A 7 8.5 <0.01 6 6 <0.01 6 6.8 0.02 6 6 0.01
24 N/A N/A 7 7.8 <0.01 6 6 <0.01 6 6 <0.01 6 6 <0.01
25 N/A N/A 8 8.7 <0.01 7 7 <0.01 8 8.5 0.67 7 7.1 5.72

150
30

25 N/A N/A 12 12.3 <0.01 11 11 <0.01 11 11.5 0.01 11 11 0.04
26 N/A N/A 10 12 <0.01 10 10 <0.01 9 10.2 0.02 9 9 0.05
27 N/A N/A 11 12.6 <0.01 11 11 <0.01 11 12.2 0.02 11 11 9.64
28 N/A N/A 10 11.9 <0.01 10 10 <0.01 11 11.5 0.01 10 10 0.1
29 N/A N/A 9 10.6 <0.01 9 9 <0.01 9 10 <0.01 9 9 <0.01
30 N/A N/A 9 10.6 <0.01 9 9 <0.01 9 10 <0.01 9 9 <0.01

• LPNMR’09 benchmarks (9 instances): This group of
benchmarks has been used on the Tenth International Confer-
ence on Logic Programming and Nonmonotonic Reasoning
(LPNMR’09), we select the problem instances that have had
a satisfactory solution (the solution is known) given in the
LPNMR benchmark, just like [Jovanovic and Tuba, 2013].
•Common UDG benchmarks (41 instances): This group of

benchmarks was developed by Jovanovic et.al in [Jovanovic
and Tuba, 2013], which is derived from ad hoc network clus-
tering problems.

5.2 Experiment preliminaries
In this section, we perform intensive experiments to evaluate
our proposed MA. We compare MA with the CPLEX, MWCDS
[Ding et al., 2016], LS and GA on 74 benchmark instances.

CPLEX is a general MIP solver, which is widely used
to solve many important constrained optimization problems
[Sun et al., 2018; Niu et al., 2021; Wang et al., 2013]. The
version of CPLEX used to solve the ILP model in subsection
2.2 in our experiments is v12.9.
MWCDS is a linear time self-stabilizing algorithm for solv-

ing minimal weakly connected dominating set problem,
which terminates in O(n) steps by using a synchronous de-
mon [Ding et al., 2016]. The solutions obtained by MWCDS
are partly decided by the random initial solutions, so we run
MWCDS 10 times independently for each instance with differ-
ent random seeds in our experiments.

Our proposed MA, GA and LS are implemented in the C++
programming language. All experiments were performed on
the Linux Ubuntu with Intel(R) Core(TM) i9-10900 CPU
@2.80GHz and 32GB memory. Each of the above three
solvers run 10 times independently for each instance with dif-
ferent random seeds, until the time limit (300 s) is reached.
The running time of CPLEX is limited to 3600s, which refers

to the cutoff limit of CPLEX in [Sun et al., 2018]. The size
of RS and FS, the crossover rate and the mutation rate in
MA or GA are set to be 30, 20, 0.9 and 0.1, respectively. The
parameter ITER NUM (LS in MA) is set to be 100.

For each instance, Best denotes the cost of best solution
found, Avg denotes the average weight of the solution ob-
tained in 10 runs, and Time denotes the running time of each
solver for obtaining its best solutions. The column is marked
as “N/A”, when the algorithm fails to provide a solution. If
the CPLEX is not terminated within 3600s, but a solution is
provided, then the running time is marked as “Feasible”.

5.3 Experimental results
Table 1 shows the comparative results of five solvers on the
random UDG benchmarks. In Table 1, CPLEX completely
solves 10 instances, i.e., the optimal solutions of them are
found and proved by CPLEX. CPLEX gives undefined solu-
tions for 2 instances. For the remaining 14 instances, CPLEX
can not solve them, since the fourth constraint in formula (2)
creates too many restrictions. For the four incomplete algo-
rithms in Table 2, MWCDS, GA, LS and MA obtains minimum
best solutions for 13 instances, 23 instances, 17 instances and
24 instances, respectively. Obviously, MA significantly out-
performs the competitors on these random UDG benchmarks.

Table 2 shows the comparative results on the LPNMR’09
benchmarks. In Table 2, CPLEX can not solve any instances.
For the four incomplete algorithms in Table 2, MWCDS, GA,
LS and GA obtain minimum best solutions for 0 instance, 1
instance, 8 instances and 9 instances, respectively. Obviously,
MA is still the best solver for MWCDSP.

Table 3 shows the comparative results on the common
UDG benchmark. Since the inefficiency of CPLEX and the
inaccuracy of MWCDS, we do not list their results in Table 3.
In Table 3, ‘B.’, ‘A.’ and ‘T.’ are the abbreviations of ‘Best’,

Table 2: Comparative results of MA with four competitors on the LPNMR’09 graph.

Ins. CPLEX MWCDS GA LS MA

Solu. Stat. Best Avg Time Best Avg Time Best Avg Time Best Avg Time
40×200 N/A N/A 8 9.4 <0.01 6 6 <0.01 5 5.0 <0.01 5 5.0 <0.01
45×250 N/A N/A 8 9.2 <0.01 5 5 1.4 5 5.0 <0.01 5 5.0 <0.01
50×250(1) N/A N/A 11 11.9 <0.01 8 8 <0.01 7 7.0 <0.01 7 7.0 <0.01
50×250(2) N/A N/A 9 11.3 <0.01 7 7 <0.01 6 6.0 0.04 6 6.0 <0.01
55×250 N/A N/A 10 12.3 <0.01 8 8 0.3 7 7.0 <0.01 7 7.0 <0.01
60×400 N/A N/A 10 11 <0.01 7 7 <0.01 6 6.0 0.01 6 6.0 <0.01
70×250 N/A N/A 17 19.4 <0.01 13 13 1.2 12 12.8 0.4 11 11.0 0.05
80×500 N/A N/A 14 15.9 <0.01 9 9 35.5 8 8.0 0.05 8 8.0 0.05
90×600 N/A N/A 16 17.8 <0.01 10 10.2 76.4 9 9.0 0.02 9 9.0 <0.01

‘Avg’ and ‘Time’ respectively. From the results of Table 3,
GA is the worst solver. Comparing to LS, MA can search bet-
ter solutions on 31 instances. For the remaining 10 instances,
LS and MA find the same best solutions. In one word, MA
is competitive with the other four solvers for the aspect of the
competition of obtained best solutions.

0 10 20 30 40 50 60 70
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

T
h

e
a
v
er

a
g
e

re
su

lt
s

o
f

M
A

 v
s.

 c
o
m

p
et

it
o
rs

The number of instance

MA vs. LS

MA vs. GA

Figure 3: The comparison of ‘AVG’ valuses of MA, GA and LS.

On the other hand, The competitive results of ‘AVG’ values
in Tables 1-3 for MA vs. competitors (LS and GA are con-
sidered) are shown in Figure 2. The values in x-axis are the
numbers of instances. The values in y-axis are computed by
AVG(competitor) /AVG(MA). From Figure 2, MA also sig-
nificantly outperforms LS and GA for the ‘AVG’ values.

From the experimental results, MA shows some edge
over LS and GA. The main reason is that, LS uses greedy
approaches and so suffers from diversity, while MA with
crossover could bring more diversity. The solution quality of
GA mainly relies on the minimal WCDSs obtained by MWCDS
which are usually not accurate enough for most complexity
graphs, while MA with local search procedure could further
improve the local optimal solution obtained by MWCDS.

6 Conclusion
In this paper, a 0-1 integer linear programming model is de-
signed for the minimum weakly connected dominating set
problem (MWCDSP), and we also introduce the framework

Table 3: Comparative results of MA with two incomplete competi-
tors on the common UDG graph.

Area(N×N) R GA LS MA
Nodes B. A. T. B. A. T. B. A. T.

400
80

60 16 16 0.3 14 14 <0.01 13 13 1.3
70 13 13 1.6 11 12 <0.01 11 11 <0.01
80 9 9.8 62.2 8 8.8 <0.01 8 8 <0.01
90 8 8.2 103.9 8 8.5 <0.01 8 8 <0.01
100 7 7 0.4 7 7.5 <0.01 7 7 <0.01
110 6 6 100.9 6 6 <0.01 6 6 <0.01
120 5 5 0.2 5 5 <0.01 5 5 <0.01

600
100

80 18 18 38.7 17 18 <0.01 15 15 3.4
90 17 17 48.6 16 16.5 <0.01 14 14 17.9
100 14 14 28.1 13 13.8 <0.01 12 12 0.1
110 13 13 5.9 11 12.5 <0.01 11 11 0.2
120 11 11 23.3 10 11 <0.01 10 10 <0.01

700
200

70 37 37.5 83.2 31 32 <0.01 29 29 85.1
80 31 31.2 84.3 26 27.2 <0.01 24 24.8 21.4
90 26 26 147.1 23 24 <0.01 20 20 6
100 21 21.5 11 19 20 <0.01 18 18 22
110 19 19 33.1 16 17.8 <0.01 16 16 0.3
120 16 16.2 120.7 14 15.2 0.1 13 13.8 39.6

1000
200

100 37 37.5 70.5 31 32 <0.01 29 29 74.1
110 33 33 40.7 28 28.8 <0.01 26 26 7
120 29 29 41.8 25 27 <0.01 23 23 23.4
130 25 25.5 28 23 23.2 <0.01 20 20 2.6
140 22 22.5 72.9 20 21.5 <0.01 18 18 84.4
150 21 21 15.4 18 18.8 <0.01 16 16.2 97.8
160 18 18.8 29.3 16 16.8 <0.01 15 15 24.1

1500
250

130 49 49.5 67.3 41 42.5 <0.01 37 37.8 62.5
140 44 44.2 99.6 38 39 <0.01 34 34.8 49.1
150 41 41.2 87.6 34 34.5 <0.01 31 31.5 99
160 37 37.8 35.2 30 32.2 <0.01 29 29 33.7

2000
300

200 43 43.8 48.9 35 36.5 <0.01 32 32.8 24.1
210 40 40.5 84 34 35.2 <0.01 30 30.8 44.5
220 37 37 136.9 31 33.5 <0.01 28 28.5 97.7
230 35 35 33.7 29 29.8 <0.01 26 26.5 80.6

2500
350

200 64 64.5 136 51 55.8 <0.01 49 49.8 26
210 59 59.5 134.4 50 52 <0.01 44 45.5 135.5
220 57 57.2 51.2 46 48.2 <0.01 42 42.8 101
230 52 53 183.5 43 44 <0.01 40 40.8 68.4

3000
400

210 80 81 114.3 61 64 0.3 61 62 59.9
220 76 76.8 116.4 62 63.5 <0.01 59 59.2 88.1
230 72 72.2 79.6 56 57.5 0.1 54 55.2 79.3
240 66 67 94.6 55 58 0.1 51 51.2 149.5

of memetic algorithm (MA) for MWCDSP, which comprises
of initializing population, crossover, mutation. In our MA, a
linear time self-stabilizing algorithm MWCDS is used to trans-
form infeasible solutions into minimal feasible solutions. We
also introduce a local search algorithm which is used to re-
fine the feasible solutions obtained by MWCDS, in which two
score functions are designed for MWCDSP. Experimental re-
sults on three types of test problems suggest that our MA can
solve MWCDSP efficiently.

In the future, we would like to further improve the memetic
algorithm for MWCDSP by some other ideas, such as config-
uration checking, dynamic connectivity maintenance etc., and
try to solve other massive instances.

References
[Bonamy et al., 2021] Marthe Bonamy, Linda Cook, Carla

Groenland, and Alexandra Wesolek. A tight local algo-
rithm for the minimum dominating set problem in outer-
planar graphs. arXiv preprint arXiv:2108.02697, 2021.

[Ding et al., 2016] Yihua Ding, James Z Wang, and Pradip K
Srimani. A linear time self-stabilizing algorithm for min-
imal weakly connected dominating sets. International
Journal of Parallel Programming, 44(1):151–162, 2016.

[Dokeroglu and Sevinc, 2021] Tansel Dokeroglu and Ender
Sevinc. Memetic teaching–learning-based optimization al-
gorithms for large graph coloring problems. Engineering
Applications of Artificial Intelligence, 102:104282, 2021.

[Domke et al., 2005] Gayla S Domke, Johannes H Hattingh,
and Lisa R Markus. On weakly connected domination in
graphs ii. Discrete Mathematics, 305(1-3):112–122, 2005.

[Du et al., 2012] Hongjie Du, Weili Wu, Shan Shan,
Donghyun Kim, and Wonjun Lee. Constructing weakly
connected dominating set for secure clustering in dis-
tributed sensor network. Journal of combinatorial opti-
mization, 23(2):301–307, 2012.

[Dunbar et al., 1997] Jean E Dunbar, Jerrold W Grossman,
Johannes H Hattingh, Stephen T Hedetniemi, and Alice A
McRae. On weakly connected domination in graphs. Dis-
crete Mathematics, 167:261–269, 1997.

[Han and Jia, 2007] Bo Han and Weijia Jia. Clustering wire-
less ad hoc networks with weakly connected dominat-
ing set. Journal of Parallel and Distributed Computing,
67(6):727–737, 2007.

[Jovanovic and Tuba, 2013] Raka Jovanovic and Milan
Tuba. Ant colony optimization algorithm with pheromone
correction strategy for the minimum connected domi-
nating set problem. Computer Science and Information
Systems, 10(1):133–149, 2013.

[Kamei and Kakugawa, 2007] Sayaka Kamei and Hirotsugu
Kakugawa. A self-stabilizing approximation algorithm
for the minimum weakly connected dominating set with
safe convergence. In Proceedings of the 1st International
Workshop on Reliability, Availability, and Security, pages
57–66, 2007.

[Lemańska and Patyk, 2008] Magdalena Lemańska and Ag-
nieszka Patyk. Weakly connected domination critical
graphs. Opuscula Mathematica, 28(3):325–330, 2008.

[Moalic and Gondran, 2019] Laurent Moalic and Alexandre
Gondran. The sum coloring problem: a memetic algo-
rithm based on two individuals. In 2019 IEEE Congress
on Evolutionary Computation (CEC), pages 1798–1805.
IEEE, 2019.

[Niu et al., 2021] Dangdang Niu, Bin Liu, and Minghao Yin.
Local search for weighted sum coloring problem. Applied
Soft Computing, 106:107290, 2021.

[Pathan and Seon, 2006] Khan Pathan and Choong Seon. A
key-predistribution-based weakly connected dominating
set for secure clustering in dsn. Springer-Verlag, 2006.

[Raczek and Cyman, 2019] Joanna Raczek and Joanna Cy-
man. Weakly connected roman domination in graphs. Dis-
crete Applied Mathematics, 267:151–159, 2019.

[Shin et al., 2010] Incheol Shin, Yilin Shen, and My T Thai.
On approximation of dominating tree in wireless sensor
networks. Optimization Letters, 4(3):393–403, 2010.

[Srimani and Xu, 2007] Pradip K Srimani and Zhenyu Xu.
Self-stabilizing algorithms of constructing spanning tree
and weakly connected minimal dominating set. In 27th
International Conference on Distributed Computing Sys-
tems Workshops (ICDCSW’07), pages 3–3. IEEE, 2007.

[Sun et al., 2018] Wen Sun, Jin-Kao Hao, Xiangjing Lai,
and Qinghua Wu. Adaptive feasible and infeasible tabu
search for weighted vertex coloring. Information Sciences,
466:203–219, 2018.

[Wang et al., 2013] Yang Wang, Jin-Kao Hao, Fred Glover,
and Zhipeng Lü. Solving the minimum sum coloring prob-
lem via binary quadratic programming. arXiv preprint
arXiv:1304.5876, 2013.

[Wang et al., 2017] Yiyuan Wang, Shaowei Cai, and Ming-
hao Yin. Local search for minimum weight dominating
set with two-level configuration checking and frequency
based scoring function. Journal of Artificial Intelligence
Research, 58:267–295, 2017.

[Wang et al., 2018a] Yiyuan Wang, Shaowei Cai, Jiejiang
Chen, and Minghao Yin. A fast local search algorithm
for minimum weight dominating set problem on massive
graphs. In IJCAI, pages 1514–1522, 2018.

[Wang et al., 2018b] Yiyuan Wang, Jiejiang Chen, Huanyao
Sun, and Minghao Yin. A memetic algorithm for mini-
mum independent dominating set problem. Neural Com-
puting and Applications, 30(8):2519–2529, 2018.

[Wu et al., 2022] Xinyun Wu, Zhipeng Lü, and Fred Glover.
A fast vertex weighting-based local search for finding min-
imum connected dominating sets. INFORMS Journal on
Computing, 34(2):817–833, 2022.

[Yu et al., 2012] Jiguo Yu, Nannan Wang, and Guanghui
Wang. Constructing minimum extended weakly-
connected dominating sets for clustering in ad hoc net-
works. Journal of Parallel and Distributed Computing,
72(1):35–47, 2012.

	Introduction
	Preliminaries
	Basic definitions
	The ILP model for the MWCDSP
	The self-stabilizing algorithm

	A simple local search algorithm for MWCDSP
	The memetic algorithm for MWCDSP
	Experimental Evaluation
	Benchmark instances
	Experiment preliminaries
	Experimental results

	Conclusion

