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Abstract
Multi-Agent Path Finding (MAPF) is a challenging prob-
lem that has recently been the subject of both theoreti-
cal research in academia, and practical application in in-
dustry. Many works extend MAPF definitions and algo-
rithms to encompass different aspects of real use-cases,
or improve different aspects of an algorithm’s perfor-
mance. However, many of these works are applied on
academic environments. Thus, they are not easily com-
bined with each other and applying them to real world
settings are not trivial. In this work we review some of
the challenges of applying MAPF algorithms to robotic
warehouses, present our approach to meeting those chal-
lenges and suggest a framework for solving MAPF prob-
lems in this application. This includes solving a lifelong
version of MAPF. We also suggest several useful metrics
for comparing algorithms in this problem and how they
change as agent density increases. In our experiments we
show that prioritized planning is very effective in such
environments despite its simplicity.

1 Introduction
Multi-agent Path Finding (MAPF) is the problem of find-
ing a set of non-conflicting paths for a set of agents on a
graph. MAPF has recently received significant interest in
many research works [Stern et al., 2019; Felner et al., 2017].
MAPF is relevant for several existing and emerging practi-
cal applications, such as robotic warehouses, UAV deliveries,
airport routing, and autonomous vehicles [Ma et al., 2019b;
Ho et al., 2019; Li et al., 2019a; Dresner and Stone, 2008].
Different applications of MAPF require various modification
over the classical definitions of MAPF, and it is not always
clear or easy to modify existing MAPF algorithms accord-
ingly.

In this work, we discuss in details two main challenges that
arise when implementing MAPF solutions for a practical ap-
plication in an automated robotic warehouse. The challenges
are: implementation cost and evaluation metrics. These chal-
lenges are in fact the focus of our main research questions
that arise in our joint work with a commercial company that
operates robotic warehouses.
Implementation Cost. In many real world cases the benefit
of using more sophisticated MAPF algorithms may be out-

weighed by the human efforts in building and maintaining
them. We therefore propose that simple MAPF algorithms
may be more valuable than previously thought. They provide
solutions of reasonable quality, while also being simple to im-
plement and modify for real use-cases. To this end we provide
an empirical evaluation comparing simple MAPF algorithms
to a more sophisticated state of the art MAPF algorithm. We
perform this evaluation on two types of MAPF problems:
classical MAPF and Lifelong MAPF, which is an online vari-
ant of MAPF where the agents are given a sequence of path
planning tasks to perform. Lifelong MAPF is an important
variant as it has real-world application when routing multiple
robots in a robotic warehouse.

For classical MAPF, we explore the usefulness of Priori-
tised Planning [Latombe, 1991] (PrP), a simple and widely-
used MAPF algorithm, and evaluate the benefit of using it
over more sophisticated MAPF algorithms. Our results show
that PrP with a simple modification — using random restarts
— often yield comparable results to an optimal MAPF algo-
rithm (CBS), achieving average solutions whose quality was
at most 11.5% of optimal in our experiments. For Lifelong
MAPF, we show that employing PrP with restarts under a
framework we call Subset Reroute, can improve the solution
quality and problem coverage of existing algorithms.
Evaluation Metrics. Finding the appropriate metrics to com-
pare MAPF solutions and demonstrate their usefulness is key
to effectively using them in the real world. We introduce new
metrics with which to compare Lifelong MAPF solutions. We
then compare these metrics with existing metrics. These met-
rics, which we call Average Individual Throughput, Time to
X% Completion, and Throughput at t, are meant to evaluate
the throughput of the solution in terms of reaching many goals
quickly. Average Individual Throughput measures the aver-
age throughput per agent. Time to X% Completion measures
the time taken to reach some percent of all goals. Through-
put at t measures the number of goals reached within a given
time window. Appropriate metrics are also useful for mak-
ing application design decisions. We show this by examining
an aspect of Lifelong MAPF, that is not typically covered by
MAPF research – finding the number of agents that should be
used in a MAPF system to achieve the best average through-
put or success rate [Salzman and Stern, 2020]. In this exam-
ination we see that the gain in throughput achieved by our
solver remains fairly steady, with a mild decreasing trend.



By contrast, its coverage does eventually begin to decrease
rapidly, but only after more than 100 agents are added.

2 Definitions and Background
In the Multi-Agent Path Finding (MAPF) problem, the in-
put is a graph G = (V,E), and a set A of agents, where
each agent ai is associated with a pair of source and goal ver-
tices (si ∈ V, gi ∈ V ). A path p is a sequence of vertices
such that each vertex is connected to the successive vertex
by an edge (called a move action), or the successive vertex is
the same vertex (called a wait action) (∀t|((p[t], p[t + 1]) ∈
E) ∨ (p[t] = p[t + 1])). Two paths pi, pj are said to con-
flict if two agents following them would occupy the same
vertex at the same time, or swap their vertices in one move
(∃t|pi[t] = pj [t] ∨ (pi[t] = pj [t+ 1] ∧ pi[t+ 1] = pj [t])). A
solution to the MAPF problem is a mapping π of each agent
ai ∈ A to a path pi that starts at its source and ends at its
goal, such that no two paths conflict. The length of a path
is defined as the number of vertices (non-unique) in the path,
minus one (len(p) = |p| − 1). A cost function cost maps a
solution to a numeric cost. Sum Of Costs (SOC) is a common
cost function for MAPF, defined as the sum of the lengths
of all plans in the solution (SOC(π) =

∑
(len(p)|p ∈ π)).

Another well known cost function is Makespan, defined as
the maximum length amongst all paths in the the solution
(makespan(π) = max(len(p)|p ∈ π)). A solution is con-
sidered optimal by some cost function if it is has the minimum
cost of all solutions to a MAPF problem.

Prioritised Planning (PrP) [Latombe, 1991] is a simple and
well known planning technique, which was also adapted for
solving MAPF problems [Silver, 2005]. In PrP, the agents are
sorted by some (often arbitrary) priority ordering. Then, in-
dividual paths are computed for the agents in order of their
priority, where each agent avoids the paths of all higher pri-
ority agents. PrP is incomplete and sub-optimal, but it is fast
(polynomial in the number of agents) and very simple to un-
derstand, implement, and extend.

A simple and effective improvement to PrP is Prioritised
Planning with Random Restarts (PrPr). In PrPr, several iter-
ations of PrP are performed. For each iteration, a different
random priority ordering is used. The best solution found
during those iterations is returned. This procedure increases
the running time linearly while improving the quality of the
solution and increasing the likelihood that any solution will
be found.

PrP and PrPr are often used in MAPF research as a baseline
[Ma et al., 2019a; Andreychuk and Yakovlev, 2018].

Conflict Based Search (CBS) is an optimal MAPF solver.
CBS performs a best-first search according to solution cost on
a binary tree called the constraint tree (CT). This is called the
high-level search. The CT is initiated with a root node, con-
taining a solution, where individual paths are created for each
agent while ignoring all other agents. These paths are created
using a single-agent search algorithm, referred to as the low-
level search. This solution may contain conflicts between the
paths of different agents. CBS resolves these conflicts by con-
straining agents, thus limiting the actions they are allowed to
make. A constraint is a tuple ⟨ai, x, t⟩ such that ai is an agent

that is prohibited from occupying vertex x at time t if x is a
vertex, or prohibited from moving on edge x between times
t− 1 and t if x is an edge. Every time a node in the CT is ex-
panded, a conflict is chosen and two constraints are created,
one for each agent in the conflict. Two child nodes are then
created, one for each constraint, and the solution in each node
is updated to satisfy the node’s constraint. The child nodes
are then inserted to OPEN. CBS halts when a node with no
conflicts is chosen for expansion.

3 Robotic Warehouses
We are interested in the MAPF use-case of navigation within
robotic warehouses. This use-case for MAPF has been gain-
ing in prevalence in the industry and as a subject of MAPF
research [Ma et al., 2019b]. In a robotic warehouse, a team
of robots (agents) must collaborate in order to move items
within the warehouse or in and out of the warehouse (typi-
cally through dedicated locations at the edges of the map).

3.1 Lifelong MAPF
As a MAPF problem, the missions that robots carry out in
a robotic warehouse can be seen as abstract movement tasks
(goals), scheduled and assigned online by some black-box as-
signment mechanism. We will refer to this modified MAPF
problem as Lifelong MAPF. The input to a Lifelong MAPF
problem is a graph G = (V,E) and a set A of agents, where
each agent ai is associated with a source vertex si ∈ V and
a queue qi of goal vertices. The queues are hidden, so that
at any time, only the current goal is known for each agent.
The solution to a Lifelong MAPF problem is a mapping π of
each agent ai ∈ A to a path pi that starts at its source si ∈ V
and passes through each one of its goals in the order that they
appear in qi, such that no two paths conflict.

3.2 Challenges in Robotic Warehouses
The robotic warehouse use-case combines many characteris-
tics that are not a part of the standard definition of MAPF.
Thus, a MAPF implementation for this use-case would typ-
ically have to address at least some of the following chal-
lenges:

Continuous Time and Space. Classical MAPF assumes
discrete timesteps and discrete locations in space. In the
real world, actions may take non-uniform amounts of time,
and the space that agents occupy (during movement or while
stationary) can be continuous [Andreychuk et al., 2022;
Li et al., 2019b; Atzmon et al., 2020c]. Concessions can be
made to satisfy these assumptions. For example, all actions
may be slowed such that they all take the same amount of
time as the longest action. Similarly, the movement of agents
may be limited such that the space is discretized. Such con-
cessions come at the cost of the quality of solutions, and the
system’s robustness to imperfect execution.

Dense and Non-Standard Environments. Grids are a
typical environment used in MAPF. They are usually 4-
connected, meaning that each cell is connected with its four
adjacent cells with undirected edges, and all edges and ac-
tions have uniform (unit) costs [Stern et al., 2019]. Industrial
applications may use grids as a base, but they may also have



various application-specific constraints and considerations.
This results in general graphs (not grids), non-unit costs, and
intricate cost functions. These factors can cause bottlenecks,
where certain parts of the graph are often densely populated.
Additionally, the source and goal locations of agents are typ-
ically assumed to be uniformly distributed. Real distributions
of movement tasks may be heavily skewed towards certain
goals or source-goal pairs. Again, this can cause areas of the
graph to often be especially dense. A recent work modified
an existing MAPF benchmark to reflect this [Kaduri et al.,
2021].

Stochastic Actions. The results of actions can never be
guaranteed. They may be delayed or inaccurately executed,
or they may depend on elements that are outside the scope of
the MAPF system and whose service time is stochastic. This
necessitates some consideration from the MAPF system, such
as robust planning, or mitigation during execution [Atzmon et
al., 2020b; Atzmon et al., 2020a] .

Real-Time and Online Planning. Most MAPF applica-
tions one can imagine require online planning that is con-
stantly reacting to new requirements, changing environments,
and execution errors [Ma et al., 2019b; Švancara et al., 2019;
Atzmon et al., 2020b; Bogatarkan et al., 2019]. Addition-
ally, in such scenarios computation would have to happen in
real-time, since it would be detrimental to pause the system
until new paths are found [Li et al., 2021]. Many MAPF al-
gorithms are designed to find optimal solutions [Felner et al.,
2017]. These algorithms are often computationally demand-
ing, but provide high quality (optimal) solutions. In the indus-
try, it is often preferred that an algorithm will find a solution
quickly even if it is (reasonably) sub-optimal, so long as it
doesn’t fail to find a solution when one exists. This issue is
acknowledged and covered by several sub-optimal MAPF al-
gorithms that provide different desired algorithmic character-
istics such as being any-time, bounded-sub-optimal, or com-
plete [Barer et al., 2014].

Task Scheduling and Assignment. Usually, movement
tasks (goals) are given to specific agents, and those specific
agents must be the ones to perform them (as soon as they are
assigned). It is possible however to consider the assignment,
and even the scheduling, of tasks to be part of the MAPF
problem, allowing them to be optimized to improve the qual-
ity of solutions [Ma et al., 2019b].

Finding the Right Metric. Different use-cases may have
different priorities for the performance of their MAPF appli-
cation. These can be affected by the characteristics of the
use-case and by unique business considerations. As we show
later in this paper, defining and choosing the right metric is
not always straightforward.

Cost of Implementation Complexity. We must con-
sider the monetary cost of implementing complex algorithms.
Even if it is possible to combine all the modifications neces-
sary for a given MAPF application, and do so with a state of
the art algorithm, such a system may be too complex to imple-
ment in a practical manner. A complex algorithmic solution
requires both an upfront investment of development time, and
an ongoing investment in the maintenance of the system. Ad-
ditionally, a simple algorithm would be more flexible in ac-
cepting future modifications that were not considered when it

was first implemented. For these reasons, the industry may
prefer simple solutions and algorithms, even if they are lack-
ing in many other aspects.

While many of these characteristics have been considered
in some form by existing works, each work typically only
considers a single modification over the classic MAPF def-
inition. Combining multiple modifications within the same
system poses a serious challenge in and of itself. While it
should theoretically be possible to combine many of exist-
ing algorithmic modifications, such intricate work is left to
the system implementer. This problem is exacerbated when
the plethora of different MAPF algorithms and their improve-
ments are considered. Not every modification has been con-
sidered for compatibility with every algorithm. Even when a
modification is considered for a particular MAPF algorithm,
it is often not considered for compatibility with its state of the
art improvements.

4 Evaluating Lifelong MAPF Solvers
The metrics with which solutions are evaluated are used to in-
form design decisions. It is therefore very important to design
the correct metrics for any MAPF application. The metric of
minimizing SOC or makespan, may be inadequate for Life-
long MAPF, as the primary concern should be finishing many
tasks (arriving at goals) quickly, which these metrics do not
directly measure. Additionally, it is important to note that to-
wards the end of the solution, agents begin to deplete their
goal queues, so performance during those timesteps is less
indicative of the quality of the solution. Therefore, metrics
should attempt to capture the steady-state of the the system.
We also measure coverage (number of instances where any
solution was found), since often failing to find a solution can
be detrimental to the performance of a practical MAPF appli-
cation.

We define the following metrics, specifically designed for
the Lifelong MAPF problem:

Time to X% Completion (lower is better) - The number of
timesteps that passed until a percent X or more of the total
number of goals was achieved. We set this percent to be 50%,
to capture the steady-state of the system. This metric is rela-
tively stable, as it can be used without special consideration
with different maps, distributions, and numbers of agents or
goals per agent. However, it hides the actual number of goals
completed. For example, adding more agents may seem like
it hurts performance since agents would interfere with each
other, while in reality the throughput would increase since
more agents would mean more goals are being worked to-
wards simultaneously.

Average Throughput (higher is better) [Li et al., 2020] -
The average number of goals achieved per timestep, equiva-
lent to the total number of tasks divided by makespan. This
metric is straightforward, but may be excessively influenced
by a few (or even one) outlier agents with very long plans.

Average Individual Throughput (higher is better) - The av-
erage number of goals each agent individually achieved per
timestep in its plan, equivalent to the total number of tasks
divided by SOC. We show this metric multiplied by a factor
of 100, for the sake of readability. This metric diminishes the



effect of agents depleting their queues at different times.
Throughput at t (higher is better) - The number of tasks

completed up to and including timestep t. We set this
timestep to be 300, as agents usually (though not always) re-
quired more than 300 timesteps to deplete their queue of goals
in this particular benchmark. This metric can clearly show the
effect of using more agents on the velocity with which goals
are completed. However, to capture the steady-state of the
system, t must be manually set according to the typical length
of plans, which can vary by map and goal distributions, and
the number of tasks each agent is given.

5 The Subset Reroute Framework

Next, we introduce Subset Reroute, a simple framework that
can sufficiently satisfy the requirements of Lifelong MAPF.
Additionally, we show how using simple algorithms within
this framework can produce results that are close, or even su-
perior to those achieved by more complex algorithms.

Subset Reroute is reminiscent of a lifelong equivalent of
Large Neighborhood Search (LNS) [Li et al., 2021]. Unlike
LNS, here the focus is not on optimizing a solution for an of-
fline MAPF problem, but on efficiently solving many small
MAPF problems as they arise in the process of solving Life-
long MAPF. Subset Reroute is composed of three primary
components:

(1) Trigger - Determines when to invoke a solver that might
modify the existing solution. Here, we consider only one trig-
gering option, where planning is only triggered when one or
more agents require paths to new goals (have just reached
their previous goals).

(2) Selector - Selects a subset of the agents whose paths
will be modifiable by the solver (other agents will be treated
as mobile obstacles). We consider three methods for selecting
agents: (a) All Agents always selects all agents. (b) Manda-
tory Agents selects only agents that have no path to fol-
low - i.e. agents who are at their goal (be it the last goal
or one from the middle of the queue). These two meth-
ods are called PLAN-ALL and PLAN-NEW respectively,
by Ma [2021]. (c) Free-space Conflicting Agents selects all
agents that Mandatory Agents selects, but then also computes
an individually optimal path for each of them (ignoring all
other agents), and adds to the selection any agents whose cur-
rent path interferes with any of the individually optimal paths.

(3) Sub-Solver - Accepts the selected subset of the agents
and the current solution, and computes a new solution while
avoiding the paths of unselected agents. Most MAPF solvers
may be modified to fit this purpose. We used CBS as an opti-
mal solver, as well as PrP and PrPr with four restarts (PrPr4).

From these options we form six solvers :
Snapshot Optimal (SO) [Stern et al., 2019] uses All Agents

and CBS. Mandatory Optimal (MO) uses Mandatory Agents
and CBS. All Agents PrPr (APR) uses All Agents and PrPr4.
Freespace Conflicts PrPr (FPR) uses Free-space Conflict-
ing Agents and PrPr4. Mandatory Agents PrPr (MPR) uses
Mandatory Agents and PrPr4. Replan Single (RS) [Stern et
al., 2019] uses Mandatory Agents and PrP.

6 Agent Density
The problem of Agent Density demonstrates one way in
which metrics are used in informing the design of a MAPF
system. When the aim is to maximize the throughput of a
system, more agents initially translate into a higher through-
put. However, space is finite and agents interfere with each
other, so naturally the average individual throughput of agents
decreases as more agents are added into the same space.
Eventually, each additional agent would only hurt the total
throughput. As an extreme example, imagine a large graph
where all vertices are occupied. Any move would have to
involve many agents moving in a synchronous manner and
likely in a manner that is detrimental to the achievement of
most of their individual goals. Surely, removing some of the
agents would alleviate the congestion and increase the total
throughput. It may therefore be beneficial to find the number
of agents for a given map, where peak throughput is likely to
be achieved [Salzman and Stern, 2020].

A simple way to estimate the best amount of agents is to
experiment with different amounts of agents on different in-
stances, and find where, on average, the quality or coverage
are highest. For this purpose, selecting an appropriate metric
is important.

7 Experimental Results
PrPr is much easier to implement and extend than many other
MAPF algorithms, such as CBS. Consequently, in this ex-
perimental section we aim to answer the following research
questions: (1) What is the benefit, in terms of solution quality,
of using CBS over PrPr. (2) What is the benefit in terms of
the number of problems the system is able to solve (coverage
/ success rate), of using CBS over PrPr.

7.1 Benchmarks and Experimental Setup
We used maps and instances from two MAPF benchmarks:

Benchmark1 is a standard MAPF benchmark [Stern et al.,
2019]. In this benchmark, maps are 4-connected grids, and
sources and goals are random, uniform, and non-repeating.
We used 11 instances per map. From the maps in this bench-
mark, we used four empty grid maps of varying sizes.

Benchmark2 is a set of warehouse maps and instances
from a commercial company that jointly works with us on
these matters. In this benchmark, maps are graphs whose con-
nectivity is similar to that of 4-connected grids, and sources
and goals were randomized based on the (skewed) distribu-
tions of real movement tasks in the warehouse. Therefore,
some sources and some goals were assigned to more than one
agent. In such events, agents that share the same source are
allowed to jointly occupy it so long as they do so since the
start of their paths. Equivalently, they are allowed to share
their goal vertex at the ends of their paths. We used 50 in-
stances per map.

For all following experiments where results for one map
are compared across different number of agents, we filter
instances per map in the following manner. Only those in-
stances solved by all numbers of agents and by all solvers
were used, while the maximal number of agents was adjusted



SOC Makespan TimeTo50% AvgThrough IndvThrough Through@300 Solved
Map Name Agents Solver

Warehouse 1 25 SO 9,997.30 537.30 235.10 0.47 2.50 161.20 11
MO 10,144.30 542.50 237.60 0.46 2.47 158.50 30
APR 10,186.50 539.50 236.10 0.47 2.46 160.90 49
FPR 10,002.80 538.20 235.60 0.47 2.50 161.00 50
MPR 10,154.10 543.70 237.40 0.46 2.46 158.90 50
RS 10,532.10 544.60 239.50 0.46 2.37 157.60 50

Warehouse 2 30 SO 13,779.69 668.46 270.69 0.45 2.18 166.23 14
MO 13,934.15 669.92 275.15 0.45 2.16 164.31 26
APR 14,079.08 669.46 272.15 0.45 2.13 165.46 42
FPR 13,887.69 669.46 271.54 0.45 2.16 166.00 50
MPR 14,066.08 671.08 277.38 0.45 2.14 163.23 50
RS 14,658.08 671.15 277.92 0.45 2.05 162.85 49

Warehouse 3 20 SO 8,000.00 569.40 242.10 0.36 2.51 126.10 10
MO 8,126.80 578.60 245.40 0.35 2.47 124.30 39
APR 8,239.40 571.60 243.30 0.35 2.43 125.10 46
FPR 8,046.20 571.60 242.30 0.35 2.49 125.40 50
MPR 8,215.90 575.30 247.30 0.35 2.44 122.70 50
RS 8,607.80 582.90 246.60 0.35 2.33 122.50 49

Table 1: Comparison of different Subset Reroute versions

per map to ensure that a minimum of five instances are used
in the final result.

All metrics were aggregated as averages. Coverage was
aggregated as the sum of successful solution, and disregards
the filtering of instances explained above.

7.2 Lifelong MAPF Experiments
For Lifelong MAPF, we experimented on maps and instances
from Benchmark2, except that each agent was given a queue
of nine goals (its source was unaffected). This queue was also
generated using real distributions from each warehouse.

Table 1 shows the results of this experiment. Only the re-
sults for the largest number of agents per map are shown.
Generally, across all metrics, the relation between solvers re-
garding the quality of their solutions was as follows: SO >
FPR > APR > MO > MPR > RS. It is interesting to note that
SOC is particularly inadequate for this problem. The same
applies for Average Individual Throughput, since it is linearly
related to SOC. As an example, we see that considering SOC,
APR was always worse (higher) than MPR. Had we only used
SOC, we might think that MPR produced higher quality solu-
tions. However, on all other metrics APR had higher quality
solutions. This is likely due to the behaviour of agents after
they have reached their last goal. Unlike MPR, APR is able to
move those agents in order to shorten the paths of agents that
are still working on their goals. This results in longer paths
for many agents, and thus a higher SOC, but actually results
in a higher quality solution, since more goals can be finished
earlier.

The relation in terms of the coverage achieved by the dif-
ferent solvers was: MPR / FPR > RS > APR > MO > SO.
Generally, the heavier solvers that include many agents or use
an optimal sub-solver had the worse coverage, because they
were likely to run out of time. RS also failed occasionally,
but because it failed to find a solution at all, while still having
time left.

Interestingly, FPR outperformed not only MPR, but also
APR, on all metrics, even though APR can move some agents
that FPR can not. It also had better coverage than APR,
though it was slightly lower than that of MPR (on more
agents, not shown in table 1). This likely means that FPR
was able to focus its search effort on more relevant agents,
thus finding better solutions and doing so faster.

This experiment shows that powerful and complex algo-
rithms (CBS) do not necessarily serve a MAPF application
any better than simple algorithms (PrPr). This is demon-
strated by the fact that while SO found the highest quality
solutions, APR and FPR found higher quality solutions than
MO, and both MO and SO performed worse in terms of cov-
erage.

7.3 Offline MAPF Experiments
To further reason about the results of our Lifelong MAPF ex-
periment, we also compared the quality of solutions found
by PrPr with those found by CBS (optimal solutions) in stan-
dard MAPF environments (Benchmark1) and under the stan-
dard definition of MAPF (offline). The results of this experi-
ment are shown in figure 1 for seven different maps from both
Benchmark1 and Benchmark2. Each instance was solved by
PrPr with nine restarts (10 total attempts), and the quality of
the best solution found so far was recorded as the solution re-
turned by each attempt (attempt #0 is equivalent to PrP). The
quality of the solutions is shown as a relative cost (SOC) com-
pared with the cost of an optimal solution for the instance,
found by a CBS [Sharon et al., 2015] based optimal solver.
The Y axis shows average relative SOC, and the X axis shows
the number of agents. Note how this setup causes each iter-
ation to always be better (lower) or equal to the previous it-
eration. Each solver was allowed 300 seconds to solve each
instance, but the incomplete solvers may also fail earlier.

Experiments on all sevens maps show a cost difference be-
tween PrP and optimal of a few percent with a few tens of



0 10 20 30 40 50 60
# Agents

1.00

1.01

1.02

1.03

1.04

empty-48-48
Solver
attempt #0
attempt #1
attempt #2
attempt #3
attempt #4
attempt #5
attempt #6
attempt #7
attempt #8
attempt #9

0 10 20 30 40 50 60
# Agents

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

empty-32-32
Solver
attempt #0
attempt #1
attempt #2
attempt #3
attempt #4
attempt #5
attempt #6
attempt #7
attempt #8
attempt #9

0 10 20 30 40 50
# Agents

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

empty-16-16
Solver
attempt #0
attempt #1
attempt #2
attempt #3
attempt #4
attempt #5
attempt #6
attempt #7
attempt #8
attempt #9

5 10 15 20 25
# Agents

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

empty-8-8
Solver
attempt #0
attempt #1
attempt #2
attempt #3
attempt #4
attempt #5
attempt #6
attempt #7
attempt #8
attempt #9

5 10 15 20 25 30 35 40 45
# Agents

1.00

1.01

1.02

1.03

1.04

1.05

1.06
Warehouse_1

Solver
attempt #0
attempt #1
attempt #2
attempt #3
attempt #4
attempt #5
attempt #6
attempt #7
attempt #8
attempt #9

5 10 15 20 25 30 35
# Agents

1.00

1.01

1.02

1.03

1.04

1.05

Warehouse_2
Solver
attempt #0
attempt #1
attempt #2
attempt #3
attempt #4
attempt #5
attempt #6
attempt #7
attempt #8
attempt #9

5 10 15 20 25 30 35
# Agents

1.00

1.02

1.04

1.06

1.08

1.10
Warehouse_3

Solver
attempt #0
attempt #1
attempt #2
attempt #3
attempt #4
attempt #5
attempt #6
attempt #7
attempt #8
attempt #9

Figure 1: SOC relative to optimal

agents. For example, on empty-16-16 with 40 agents, the
difference was 9.5% . There was a clear trend of the cost
difference increasing as the number of agents increases. We
observe that more dense maps produce a higher cost differ-
ence. This is true for the very small maps (like empty-8-8),
but also for the warehouse maps, where the skewed goal dis-
tributions likely cause congested areas in the map where the
density is high. We also observe that a few random restarts
significantly improve the quality of solutions (on average).
However, the proportion of the improvement that is achieved
decreases as the number of agents increases. For example,
on map empty-16-16 with 30 agents, using nine restarts re-
duced the cost difference by 38.1% (7.6% to 4.7%), but with
50 agents it reduced the difference by 23% (13.9% to 10.7%).
This may happen because as the number of agents increases
the problem becomes more dense, so a larger proportion of
the orderings results in low quality solutions or no solution
at all. Additionally, we observe that most of the benefit of
the random restarts can be gained by performing just a few of
them, as the benefit gained from each additional restart seems
to diminish quickly. This trend is to be expected. Since or-
derings are sampled completely randomly, the likelihood of
finding an ordering that is better than the best one found so
far decreases as more orderings are sampled.

These results demonstrate that despite its simplicity, PrPr
can find solution whose quality is close to optimal.
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Figure 2: Throughput gain and coverage by agent density

7.4 Agent Density Experiments
Figure 2 shows the results of an Agent Density experiment,
on the maps in Benchmark2. We used MPR because it had the
best coverage in the Lifelong MAPF experiment. We used up
to 200 agents per map. We show the coverage achieved per
number of agents, before filtering instances (right Y axis).
We show the gain in Throughput at 300 achieved by adding
each batch of extra agents (left Y axis). We observe that the
gain seems to decrease as more agents are added, but this
trend is quite slow, as the gain was only reduced by about
10% when the last 100 agents were added. Therefore, it is
likely that many agents can still be added before they con-
strain each other’s movements so often that throughput is re-
duced by adding them. This demonstrates that MPR can be
quite powerful in terms of solution quality. On the other hand,
coverage dropped much faster when more agents were added.
Therefore, if a system has to contain hundreds of agents, it
may be more important to optimize solvers for higher cov-
erage, rather than solution quality. Regardless, we can learn
from this experiment how many agents should be used by a
system that uses MPR as its MAPF solver. For instance, if an
average success rate of at least 80% is desired, no more than
125 agents should be used on Warehouse 2.

8 Conclusions and Future Work
We explored challenges and solutions in applying MAPF to
real use-cases in the industry, particularly the robotic ware-
house use-case (Lifelong MAPF). We showed that simple
MAPF algorithms can achieve reasonable solution quality,
while being easy to modify and extend. We also added new
metrics by which to judge solutions for Lifelong MAPF. Fi-
nally, we explored the problem of Agent Density, where the
goal it find how many agents should be used to improve
throughput or achieve a high success rate.

Future work could explore other methods for the compo-
nents of Subset Reroute, examine ways to avoid failing to find
solutions under Subset Reroute, or find other ways to improve
Prioritised Planning without making it more complex.
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